
Package: mixvlmc (via r-universe)
September 4, 2024

Type Package
Title Variable Length Markov Chains with Covariates
Version 0.2.1.9000
Description Estimates Variable Length Markov Chains (VLMC) models and

VLMC with covariates models from discrete sequences. Supports
model selection via information criteria and simulation of new
sequences from an estimated model. See Bühlmann, P. and Wyner,
A. J. (1999) <doi:10.1214/aos/1018031204> for VLMC and Zanin
Zambom, A., Kim, S. and Lopes Garcia, N. (2022)
<doi:10.1111/jtsa.12615> for VLMC with covariates.

License GPL (>= 3)

URL https://github.com/fabrice-rossi/mixvlmc,
https://fabrice-rossi.github.io/mixvlmc/

BugReports https://github.com/fabrice-rossi/mixvlmc/issues
Encoding UTF-8
LazyData true
Imports assertthat, butcher, cli, methods, nnet, pROC, Rcpp (>=

1.0.8.3), rlang, stats, stringr, VGAM, withr, xtable
LinkingTo Rcpp
RoxygenNote 7.3.1
Suggests data.table, foreach, geodist, ggplot2, knitr, rmarkdown,

testthat (>= 3.0.0), tibble, vdiffr, waldo
Config/testthat/edition 3
Config/testthat/parallel true
Config/testthat/start-first covlmc*
Depends R (>= 2.10)
Roxygen list(markdown = TRUE)
VignetteBuilder knitr
Repository https://fabrice-rossi.r-universe.dev

1

https://doi.org/10.1214/aos/1018031204
https://doi.org/10.1111/jtsa.12615
https://github.com/fabrice-rossi/mixvlmc
https://fabrice-rossi.github.io/mixvlmc/
https://github.com/fabrice-rossi/mixvlmc/issues

2 Contents

RemoteUrl https://github.com/fabrice-rossi/mixvlmc
RemoteRef HEAD
RemoteSha 0b4e012f17b731c6a861300b91e6e0353226af56

Contents
mixvlmc-package . 4
as_covlmc . 5
as_sequence . 6
as_vlmc . 6
as_vlmc.ctx_tree_cpp . 7
autoplot.tune_covlmc . 8
autoplot.tune_vlmc . 9
charset_ascii . 10
charset_utf8 . 12
children . 13
contexts . 14
contexts.covlmc . 16
contexts.ctx_tree . 18
contexts.vlmc . 20
context_number . 23
context_number.covlmc . 24
counts . 24
covariate_depth . 26
covariate_memory . 26
covlmc . 27
covlmc.default . 29
covlmc.dts . 31
covlmc_control . 33
ctx_tree . 34
ctx_tree.default . 35
ctx_tree.dts . 37
cutoff . 38
cutoff.covlmc . 39
cutoff.ctx_node . 40
cutoff.vlmc . 41
depth . 43
draw . 44
draw.covlmc . 45
draw.ctx_tree_cpp . 48
draw.vlmc . 50
draw_control . 51
dts . 53
dts_data . 54
find_sequence . 54
find_sequence.covlmc . 55
globalearthquake . 57

Contents 3

is_context . 58
is_covlmc . 58
is_ctx_tree . 59
is_dts . 60
is_merged . 60
is_reversed . 61
is_vlmc . 62
logLik.covlmc . 62
logLik.vlmc . 63
loglikelihood . 65
loglikelihood.covlmc . 67
merged_with . 70
metrics . 71
metrics.covlmc . 72
metrics.ctx_node . 74
metrics.ctx_node_covlmc . 75
metrics.vlmc . 76
model . 78
parent . 79
plot.tune_vlmc . 80
positions . 82
powerconsumption . 83
predict.covlmc . 84
predict.vlmc . 85
print.contexts . 87
print.dts . 88
prune . 88
prune.covlmc . 90
rev.ctx_node . 91
simulate.covlmc . 91
simulate.vlmc . 93
simulate.vlmc_cpp . 95
states . 97
trim . 98
trim.covlmc . 99
trim.vlmc . 100
trim.vlmc_cpp . 101
tune_covlmc . 101
tune_vlmc . 104
vlmc . 106
vlmc.default . 108
vlmc.dts . 110

Index 113

4 mixvlmc-package

mixvlmc-package mixvlmc: Variable Length Markov Chains with Covariates

Description

Estimates Variable Length Markov Chains (VLMC) models and VLMC with covariates
models from discrete sequences. Supports model selection via information criteria and
simulation of new sequences from an estimated model. See Bühlmann, P. and Wyner, A. J.
(1999) doi:10.1214/aos/1018031204 for VLMC and Zanin Zambom, A., Kim, S. and Lopes
Garcia, N. (2022) doi:10.1111/jtsa.12615 for VLMC with covariates.

Package options

Mixvlmc uses the following options():

• mixvlmc.maxit: maximum number of iterations in model fitting for covlmc()
• mixvlmc.predictive: specifies the computing engine used for model fitting for covlmc().

Two values are supported:
– "glm" (default value): covlmc() uses stats::glm() with a binomial link (stats::binomial())

for a two values state space, and VGAM::vglm() with a multinomial link (VGAM::multinomial())
for a state space with three or more values;

– "multinom": covlmc() uses nnet::multinom() in all cases.
The first option "glm" is recommended as both stats::glm() and VGAM::vglm() are
able to detect and deal with degeneracy in the data set.

• mixvlmc.backend: specifies the implementation used for the context tree construction
in ctx_tree(), vlmc() and tune_vlmc(). Two values are supported:

– "R" (default value): this corresponds to the original almost pure R implementa-
tion.

– "C++": this corresponds to the experimental C++ implementation. This version
is significantly faster than the R version, but is still considered experimental.

• mixvlmc.charset: specifies the collection of characters used to display context trees
in ”ascii art” when using the "text" format for draw() and related functions. Two
values are supported:

– "ascii": the collection uses only standard ASCII characters and should be com-
patible with all environments;

– "utf8": the collection uses UTF-8 symbols and needs a compatible display. At
loading the option is set based on a call to cli::is_utf8_output(). It defaults
to "utf8" is this encoding is supported.

Author(s)

Maintainer: Fabrice Rossi <Fabrice.Rossi@apiacoa.org> (ORCID) [copyright holder]
Other contributors:

• Hugo Le Picard <lepicardhugo@gmail.com> (ORCID) [contributor]
• Guénolé Joubioux <guenole.joubioux@gmail.com> [contributor]

https://doi.org/10.1214/aos/1018031204
https://doi.org/10.1111/jtsa.12615
https://orcid.org/0000-0003-4638-1286
https://orcid.org/0000-0002-7023-2996

as_covlmc 5

See Also

Useful links:

• https://github.com/fabrice-rossi/mixvlmc

• https://fabrice-rossi.github.io/mixvlmc/

• Report bugs at https://github.com/fabrice-rossi/mixvlmc/issues

as_covlmc Convert an object to a Variable Length Markov Chain with co-
variates (coVLMC)

Description

This generic function converts an object into a covlmc.

Usage

as_covlmc(x, ...)

S3 method for class 'tune_covlmc'
as_covlmc(x, ...)

Arguments

x an object to convert into a covlmc.
... additional arguments for conversion functions.

Value

a covlmc

See Also

tune_covlmc()

Examples

conversion from the results of tune_covlmc
pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
rdts_best_model_tune <- tune_covlmc(rdts, rdts_cov)
rdts_best_model <- as_covlmc(rdts_best_model_tune)
draw(rdts_best_model)

https://github.com/fabrice-rossi/mixvlmc
https://fabrice-rossi.github.io/mixvlmc/
https://github.com/fabrice-rossi/mixvlmc/issues

6 as_vlmc

as_sequence Extract the sequence encoded by a node

Description

This function returns the sequence represented by the node object.

Usage

as_sequence(node, reverse)

Arguments

node a ctx_node object as returned by find_sequence()
reverse specifies whether the sequence should be reported in reverse temporal

order (TRUE) or in the temporal order (FALSE). Defaults to the order
associated to the ctx_node which is determined by the parameters of the
call to contexts() or find_sequence().

Value

the sequence represented by the node object, a vector

Examples
rdts <- c("A", "B", "C", "A", "A", "B", "B", "C", "C", "A")
rdts_tree <- ctx_tree(rdts, max_depth = 3)
res <- find_sequence(rdts_tree, "A")
as_sequence(res)

as_vlmc Convert an object to a Variable Length Markov Chain (VLMC)

Description

This generic function converts an object into a vlmc.

Usage

as_vlmc(x, ...)

S3 method for class 'ctx_tree'
as_vlmc(x, alpha, cutoff, ...)

S3 method for class 'tune_vlmc'
as_vlmc(x, ...)

as_vlmc.ctx_tree_cpp 7

Arguments

x an object to convert into a vlmc.
... additional arguments for conversion functions.
alpha cut off parameter applied during the conversion, quantile scale (if speci-

fied)
cutoff cut off parameter applied during the conversion, native scale (if specified)

Details

This function converts a context tree into a VLMC. If alpha or cutoff is specified, it is
used to reduce the complexity of the tree as in a direct call to vlmc() (prune()).

Value

a vlmc

See Also

ctx_tree()
tune_vlmc()

Examples
conversion from a context tree
rdts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
rdts_ctree <- ctx_tree(rdts, min_size = 1, max_depth = 3)
draw(rdts_ctree)
rdts_vlmc <- as_vlmc(rdts_ctree)
class(rdts_vlmc)
draw(rdts_vlmc)
conversion from the result of tune_vlmc
rdts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
tune_result <- tune_vlmc(rdts)
tune_result
rdts_best_vlmc <- as_vlmc(tune_result)
draw(rdts_best_vlmc)

as_vlmc.ctx_tree_cpp Convert an object to a Variable Length Markov Chain (VLMC)

Description

This generic function converts an object into a vlmc.

Usage

S3 method for class 'ctx_tree_cpp'
as_vlmc(x, alpha, cutoff, ...)

8 autoplot.tune_covlmc

Arguments

x an object to convert into a vlmc.
alpha cut off parameter applied during the conversion, quantile scale (if speci-

fied)
cutoff cut off parameter applied during the conversion, native scale (if specified)
... additional arguments for conversion functions.

Details

This function converts a context tree into a VLMC. If alpha or cutoff is specified, it is
used to reduce the complexity of the tree as in a direct call to vlmc() (prune()).

Value

a vlmc

See Also

ctx_tree()

tune_vlmc()

Examples

conversion from a context tree
rdts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
rdts_ctree <- ctx_tree(rdts, min_size = 1, max_depth = 3, backend = "C++")
draw(rdts_ctree)
rdts_vlmc <- as_vlmc(rdts_ctree)
class(rdts_vlmc)
draw(rdts_vlmc)

autoplot.tune_covlmc Create a complete ggplot for the results of automatic COVLMC
complexity selection

Description

This function prepares a plot of the results of tune_covlmc() using ggplot2. The result
can be passed to print() to display the result.

Usage

S3 method for class 'tune_covlmc'
autoplot(object, ...)

autoplot.tune_vlmc 9

Arguments

object a tune_covlmc object
... additional parameters (not used currently)

Details

The graphical representation proposed by this function is complete, while the one produced
by plot.tune_covlmc() is minimalistic. We use here the faceting capabilities of ggplot2
to combine on a single graphical representation the evolution of multiple characteristics of
the VLMC during the pruning process, while plot.tune_covlmc() shows only the selection
criterion or the log likelihood. Each facet of the resulting plot shows a quantity as a function
of the cut off expressed in quantile or native scale.

Value

a ggplot object

Examples

pc <- powerconsumption[powerconsumption$week %in% 10:12,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
rdts_best_model_tune <- tune_covlmc(rdts, rdts_cov, criterion = "AIC")
covlmc_plot <- ggplot2::autoplot(rdts_best_model_tune)
print(covlmc_plot)

autoplot.tune_vlmc Create a complete ggplot for the results of automatic VLMC com-
plexity selection

Description

This function prepares a plot of the results of tune_vlmc() using ggplot2. The result can
be passed to print() to display the result.

Usage

S3 method for class 'tune_vlmc'
autoplot(object, cutoff = c("quantile", "native"), ...)

Arguments

object a tune_vlmc object
cutoff the scale used for the cut off criterion (default ”quantile”)
... additional parameters (not used currently)

10 charset_ascii

Details

The graphical representation proposed by this function is complete, while the one produced
by plot.tune_vlmc() is minimalistic. We use here the faceting capabilities of ggplot2 to
combine on a single graphical representation the evolution of multiple characteristics of
the VLMC during the pruning process, while plot.tune_vlmc() shows only the selection
criterion or the log likelihood. Each facet of the resulting plot shows a quantity as a function
of the cut off expressed in quantile or native scale.

Value

a ggplot object

Examples
pc <- powerconsumption[powerconsumption$week %in% 10:11,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
rdts_best_model_tune <- tune_vlmc(rdts, criterion = "BIC")
vlmc_plot <- ggplot2::autoplot(rdts_best_model_tune)
print(vlmc_plot)
simple post customisation
print(vlmc_plot + ggplot2::geom_point())

charset_ascii ASCII character set for context tree text representation

Description

This function returns a list of ASCII characters used to fine tune the draw() function
behaviour when it is used with format="text". It can be used as is or customised using
its parameters.

Usage

charset_ascii(
root = "*",
first_node = "+",
next_node = "'",
final_node = "'",
vbranch = "|",
hbranch = "--",
open_ct = "(",
close_ct = ")",
level_sep = " ~ ",
time_sep = " | ",
intercept = "(I)",
intercept_sep = " & ",
open_p_value = "<",
close_p_value = ">",

charset_ascii 11

open_model = "[",
close_model = "]"

)

Arguments

root character used for the root node.

first_node characters used for the first child of a node.

next_node characters used for intermediate children of a node.

final_node characters used for the last child of a node.

vbranch characters used to represent a branch in a vertical way.

hbranch characters used to represent a branch in a horizontal was.

open_ct characters used to start each node specific text representation.

close_ct characters used to end each node specific text representation.

level_sep characters used to separate levels from models in draw.covlmc().

time_sep characters used to separate temporal blocks in draw.covlmc().

intercept characters used to represent the intercept in draw.covlmc().

intercept_sep characters used to the intercept from the other parameters in draw.covlmc().

open_p_value characters used as opening delimiters for the p value of a node in draw.covlmc().

close_p_value characters used as closing delimiters for the p value of a node in draw.covlmc().

open_model characters used as opening delimiters for the representation of a model in
draw.covlmc().

close_model characters used as closing delimiters for the representation of a model in
draw.covlmc().

Value

a list

See Also

draw(), charset_utf8().

Examples

charset_ascii(root = "x")

12 charset_utf8

charset_utf8 UTF-8 character set for context tree text representation

Description

This function returns a list of UTF-8 characters and symbols used to fine tune the draw()
function behaviour when it is used with format="text". It can be used as is or customised
using its parameters.

Usage

charset_utf8(
root = "�",
first_node = "�",
next_node = "�",
final_node = "�",
vbranch = "�",
hbranch = "�",
open_ct = "(",
close_ct = ")",
level_sep = " ~ ",
time_sep = " � ",
intercept = "(I)",
intercept_sep = " • ",
open_p_value = "‹",
close_p_value = "›",
open_model = "[",
close_model = "]"

)

Arguments

root character used for the root node.
first_node characters used for the first child of a node.
next_node characters used for intermediate children of a node.
final_node characters used for the last child of a node.
vbranch characters used to represent a branch in a vertical way.
hbranch characters used to represent a branch in a horizontal was.
open_ct characters used to start each node specific text representation.
close_ct characters used to end each node specific text representation.
level_sep characters used to separate levels from models in draw.covlmc().
time_sep characters used to separate temporal blocks in draw.covlmc().
intercept characters used to represent the intercept in draw.covlmc().
intercept_sep characters used to the intercept from the other parameters in draw.covlmc().

children 13

open_p_value characters used as opening delimiters for the p value of a node in draw.covlmc().

close_p_value characters used as closing delimiters for the p value of a node in draw.covlmc().

open_model characters used as opening delimiters for the representation of a model in
draw.covlmc().

close_model characters used as closing delimiters for the representation of a model in
draw.covlmc().

Value

a list

See Also

draw(), charset_ascii().

Examples

charset_utf8(root = "\u27E1")

children Find the children nodes of a node in a context tree

Description

This function returns a list (possibly empty) of ctx_node objects. Each object represents
one of the children of the node represented by the node parameter.

Usage

children(node)

S3 method for class 'ctx_node'
children(node)

S3 method for class 'ctx_node_cpp'
children(node)

Arguments

node a ctx_node object as returned by find_sequence()

14 contexts

Details

Each node of a context tree represents a sequence. When find_sequence() is called with
success, the returned object represents the corresponding node in the context tree. If this
node has no child, the present function returns an empty list. When the node has at least
one child, the function returns a list with one value for each element in the state space (see
states()). The value is NULL if the corresponding child is empty, while it is a ctx_node
object when the child is present. Each ctx_node object is associated to the sequence
obtained by adding to the past of the sequence represented by node an observation of the
associated state (this corresponds to an extension to the left of the sequence in temporal
order).

Value

a list of ctx_node objects, see details.

Examples

rdts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
rdts_ctree <- ctx_tree(rdts, min_size = 1, max_depth = 3)
ctx_00 <- find_sequence(rdts_ctree, c(0, 0))
this context can only be extended in the past by 1:
children(ctx_00)
ctx_10 <- find_sequence(rdts_ctree, c(1, 0))
this context can be extended by both states
children(ctx_10)
C++ backend
rdts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
rdts_ctree <- ctx_tree(rdts, min_size = 1, max_depth = 3, backend = "C++")
ctx_00 <- find_sequence(rdts_ctree, c(0, 0))
this context can only be extended in the past by 1:
children(ctx_00)
ctx_10 <- find_sequence(rdts_ctree, c(1, 0))
this context can be extended by both states
children(ctx_10)

contexts Contexts of a context tree

Description

This function extracts from a context tree a description of all of its contexts.

Usage

contexts(ct, sequence = FALSE, reverse = FALSE, ...)

contexts 15

Arguments

ct a context tree.
sequence if TRUE the function returns its results as a data.frame, if FALSE (default)

as a list of ctx_node objects. (see details)
reverse logical (defaults to FALSE). See details.
... additional arguments for the contexts function.

Details

The default behaviour consists in returning a list of all the contexts contained in the tree
using ctx_node objects (as returned by e.g. find_sequence()) (with type="list"). The
properties of the contexts can then be explored using adapted functions such as counts()
and positions(). The result list is of class contexts. When sequence=TRUE, the method
returns a data.frame whose first column, named context, contains the contexts as vectors
(i.e. the value returned by as_sequence() applied to a ctx_node object). Other columns
contain context specific values which depend on the actual class of the tree and on additional
parameters. In all implementations of contexts(), setting the additional parameters to
any no default value leads to a data.frame result.

Value

A list of class contexts containing the contexts represented in this tree (as ctx_node) or
a data.frame.

State order in a context

Notice that contexts are given by default in the temporal order and not in the ”reverse”
order used by many VLMC research papers: older values are on the left. For instance, the
context c(1, 0) is reported if the sequence 0, then 1 appeared in the time series used to
build the context tree. Set reverse to TRUE for the reverse convention which is somewhat
easier to relate to the way the context trees are represented by draw() (i.e. recent values
at the top the tree).

See Also

find_sequence() and find_sequence.covlmc() for direct access to a specific context,
and contexts.ctx_tree(), contexts.vlmc() and contexts.covlmc() for concrete im-
plementations of contexts().

Examples

rdts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
rdts_tree <- ctx_tree(rdts, max_depth = 3, min_size = 5)
contexts(rdts_tree)
contexts(rdts_tree, TRUE, TRUE)

16 contexts.covlmc

contexts.covlmc Contexts of a VLMC with covariates

Description

This function returns the different contexts present in a VLMC with covariates, possibly
with some associated data.

Usage

S3 method for class 'covlmc'
contexts(

ct,
sequence = FALSE,
reverse = FALSE,
frequency = NULL,
positions = FALSE,
local = FALSE,
metrics = FALSE,
model = NULL,
hsize = FALSE,
merging = FALSE,
...

)

Arguments

ct a fitted covlmc model.
sequence if TRUE the function returns its results as a data.frame, if FALSE (default)

as a list of ctx_node objects. (see details)
reverse logical (defaults to FALSE). See details.
frequency specifies the counts to be included in the result data.frame. The default

value of NULL does not include anything. "total" gives the number of
occurrences of each context in the original sequence. "detailed" includes
in addition the break down of these occurrences into all the possible states.

positions logical (defaults to FALSE). Specify whether the positions of each context
in the time series used to build the context tree should be reported in
a positions column of the result data frame. The availability of the
positions depends on the way the context tree was built. See details for
the definition of a position.

local specifies how the counts reported by frequency are computed. When
local is FALSE (default value) the counts include both counts that are
specific to the context (if any) and counts from the descendants of the
context in the tree. When local is TRUE the counts include only the
number of times the context appears without being the last part of a
longer context.

contexts.covlmc 17

metrics if TRUE, adds predictive metrics for each context (see metrics() for the
definition of predictive metrics).

model specifies whether to include the model associated to a each context. The
default result with model=NULL does not include any model. Setting model
to "coef" adds the coefficients of the models in a coef column, while
"full" include the models themselves (as R objects) in a model column.

hsize if TRUE, adds a hsize column to the result data frame that gives for
each context the size of the history of covariates used by the model.

merging if TRUE, adds a merged column to the result data frame. For a normal
context, the value of merged is FALSE. Contexts that share the same
model have a TRUE merged value.

... additional arguments for the contexts function.

Details

The default behaviour of the function is to return a list of all the contexts using ctx_node_covlmc
objects (as returned by find_sequence.covlmc()). The properties of the contexts can then
be explored using adapted functions such as counts(), covariate_memory(), cutoff.ctx_node(),
metrics.ctx_node(), model(), merged_with() and positions().
When sequence=TRUE the method returns a data.frame whose first column, named context,
contains the contexts as vectors (i.e. the value returned by as_sequence() applied to a
ctx_node object). Other columns contain context specific values specified by the additional
parameters. Setting any of those parameters to a value that ask for reporting information
will toggle the result type of the function to data.frame.
See contexts.ctx_tree() for details about the frequency parameter. When model is non
NULL, the resulting data.frame contains the models associated to each context (either the
full R model or its coefficients). Other columns are added is the corresponding parameters
are set to TRUE.

Value

A list of class contexts containing the contexts represented in this tree (as ctx_node_covlmc)
or a data.frame.

Positions

A position of a context ctx in the time series x is an index value t such that the context
ends with x[t]. Thus x[t+1] is after the context. For instance if x=c(0, 0, 1, 1) and
ctx=c(0, 1) (in standard state order), then the position of ctx in x is 3.

State order in a context

Notice that contexts are given by default in the temporal order and not in the ”reverse”
order used by many VLMC research papers: older values are on the left. For instance, the
context c(1, 0) is reported if the sequence 0, then 1 appeared in the time series used to
build the context tree. Set reverse to TRUE for the reverse convention which is somewhat
easier to relate to the way the context trees are represented by draw() (i.e. recent values
at the top the tree).

18 contexts.ctx_tree

See Also

find_sequence() and find_sequence.covlmc() for direct access to a specific context,
and contexts.ctx_tree(), contexts.vlmc() and contexts.covlmc() for concrete im-
plementations of contexts().

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(0, median(pc$active_power), max(pc$active_power))
dts <- cut(pc$active_power, breaks = breaks)
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5)
direct representation with ctx_node_covlmc objects
m_cov_ctxs <- contexts(m_cov)
m_cov_ctxs
sapply(m_cov_ctxs, covariate_memory)
sapply(m_cov_ctxs, is_merged)
sapply(m_cov_ctxs, model)
data.frame interface
contexts(m_cov, model = "coef")
contexts(m_cov, model = "full", hsize = TRUE)

contexts.ctx_tree Contexts of a context tree

Description

This function extracts from a context tree a description of all of its contexts.

Usage

S3 method for class 'ctx_tree'
contexts(

ct,
sequence = FALSE,
reverse = FALSE,
frequency = NULL,
positions = FALSE,
...

)

S3 method for class 'ctx_tree_cpp'
contexts(

ct,
sequence = FALSE,
reverse = FALSE,
frequency = NULL,
positions = FALSE,

contexts.ctx_tree 19

...
)

Arguments

ct a context tree.
sequence if TRUE the function returns its results as a data.frame, if FALSE (default)

as a list of ctx_node objects. (see details)
reverse logical (defaults to FALSE). See details.
frequency specifies the counts to be included in the result data.frame. The default

value of NULL does not include anything. "total" gives the number of
occurrences of each context in the original sequence. "detailed" includes
in addition the break down of these occurrences into all the possible states.

positions logical (defaults to FALSE). Specify whether the positions of each context
in the time series used to build the context tree should be reported in
a positions column of the result data frame. The availability of the
positions depends on the way the context tree was built. See details for
the definition of a position.

... additional arguments for the contexts function.

Details

The default behaviour of the function is to return a list of all the contexts using ctx_node
objects (as returned by find_sequence()). The properties of the contexts can then be
explored using adapted functions such as counts() and positions().
When sequence=TRUE the method returns a data.frame whose first column, named context,
contains the contexts as vectors (i.e. the value returned by as_sequence() applied to a
ctx_node object). Other columns contain context specific values specified by the additional
parameters. Setting any of those parameters to a value that ask for reporting information
will toggle the result type of the function to data.frame.
If frequency="total", an additional column named freq gives the number of occurrences
of each context in the series used to build the tree. If frequency="detailed", one addi-
tional column is added per state in the context space. Each column records the number of
times a given context is followed by the corresponding value in the original series.

Value

A list of class contexts containing the contexts represented in this tree (as ctx_node) or
a data.frame.

Positions

A position of a context ctx in the time series x is an index value t such that the context
ends with x[t]. Thus x[t+1] is after the context. For instance if x=c(0, 0, 1, 1) and
ctx=c(0, 1) (in standard state order), then the position of ctx in x is 3.

20 contexts.vlmc

State order in a context

Notice that contexts are given by default in the temporal order and not in the ”reverse”
order used by many VLMC research papers: older values are on the left. For instance, the
context c(1, 0) is reported if the sequence 0, then 1 appeared in the time series used to
build the context tree. Set reverse to TRUE for the reverse convention which is somewhat
easier to relate to the way the context trees are represented by draw() (i.e. recent values
at the top the tree).

See Also

find_sequence() and find_sequence.covlmc() for direct access to a specific context,
and contexts.ctx_tree(), contexts.vlmc() and contexts.covlmc() for concrete im-
plementations of contexts().

Examples
rdts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
rdts_tree <- ctx_tree(rdts, max_depth = 3, min_size = 5)
direct representation with ctx_node objects
contexts(rdts_tree)
data.frame format
contexts(rdts_tree, sequence = TRUE)
contexts(rdts_tree, frequency = "total")
contexts(rdts_tree, frequency = "detailed")

contexts.vlmc Contexts of a VLMC

Description

This function extracts all the contexts from a fitted VLMC, possibly with some associated
data.

Usage

S3 method for class 'vlmc'
contexts(

ct,
sequence = FALSE,
reverse = FALSE,
frequency = NULL,
positions = FALSE,
local = FALSE,
cutoff = NULL,
metrics = FALSE,
...

)

contexts.vlmc 21

S3 method for class 'vlmc_cpp'
contexts(

ct,
sequence = FALSE,
reverse = FALSE,
frequency = NULL,
positions = FALSE,
local = FALSE,
cutoff = NULL,
metrics = FALSE,
...

)

Arguments

ct a context tree.

sequence if TRUE the function returns its results as a data.frame, if FALSE (default)
as a list of ctx_node objects. (see details)

reverse logical (defaults to FALSE). See details.

frequency specifies the counts to be included in the result data.frame. The default
value of NULL does not include anything. "total" gives the number of
occurrences of each context in the original sequence. "detailed" includes
in addition the break down of these occurrences into all the possible states.

positions logical (defaults to FALSE). Specify whether the positions of each context
in the time series used to build the context tree should be reported in
a positions column of the result data frame. The availability of the
positions depends on the way the context tree was built. See details for
the definition of a position.

local specifies how the counts reported by frequency are computed. When
local is FALSE (default value) the counts include both counts that are
specific to the context (if any) and counts from the descendants of the
context in the tree. When local is TRUE the counts include only the
number of times the context appears without being the last part of a
longer context.

cutoff specifies whether to include the cut off value associated to each context
(see cutoff() and prune()). The default result with cutoff=NULL does
not include those values. Setting cutoff to quantile adds the cut off
values in quantile scale, while cutoff="native" adds them in the native
scale. The returned values are directly based on the log likelihood ratio
computed in the context tree and are not modified to ensure pruning (as
when cutoff() is called by raw=TRUE).

metrics if TRUE, adds predictive metrics for each context (see metrics() for the
definition of predictive metrics).

... additional arguments for the contexts function.

22 contexts.vlmc

Details

The default behaviour of the function is to return a list of all the contexts using ctx_node
objects (as returned by find_sequence()). The properties of the contexts can then be ex-
plored using adapted functions such as counts(), cutoff.ctx_node(), metrics.ctx_node()
and positions().
When sequence=TRUE the method returns a data.frame whose first column, named context,
contains the contexts as vectors (i.e. the value returned by as_sequence() applied to a
ctx_node object). Other columns contain context specific values specified by the additional
parameters. Setting any of those parameters to a value that ask for reporting information
will toggle the result type of the function to data.frame.
The frequency parameter is described in details in the documentation of contexts.ctx_tree().
When cutoff is non NULL, the resulting data.frame contains a cutoff column with the
cut off values, either in quantile or in native scale. See cutoff.vlmc() and prune.vlmc()
for the definitions of cut off values and of the two scales.

Value

A list of class contexts containing the contexts represented in this tree (as ctx_node) or
a data.frame.

Cut off values

The cut off values reported by contexts.vlmc can be different from the ones reported by
cutoff.vlmc() for three reasons:

1. cutoff.vlmc() reports only useful cut off values, i.e., cut off values that should induce
a simplification of the VLMC when used in prune(). This exclude cut off values
associated to simple contexts that are smaller than the ones of their descendants in
the context tree. Those values are reported by context.vlmc.

2. context.vlmc reports only cut off values of actual contexts, while cutoff.vlmc()
reports cut off values for all nodes of the context tree.

3. values are not modified to induce pruning, contrarily to the default behaviour of
cutoff.vlmc()

Positions

A position of a context ctx in the time series x is an index value t such that the context
ends with x[t]. Thus x[t+1] is after the context. For instance if x=c(0, 0, 1, 1) and
ctx=c(0, 1) (in standard state order), then the position of ctx in x is 3.

State order in a context

Notice that contexts are given by default in the temporal order and not in the ”reverse”
order used by many VLMC research papers: older values are on the left. For instance, the
context c(1, 0) is reported if the sequence 0, then 1 appeared in the time series used to
build the context tree. Set reverse to TRUE for the reverse convention which is somewhat
easier to relate to the way the context trees are represented by draw() (i.e. recent values
at the top the tree).

context_number 23

See Also

find_sequence() and find_sequence.covlmc() for direct access to a specific context,
and contexts.ctx_tree(), contexts.vlmc() and contexts.covlmc() for concrete im-
plementations of contexts().

Examples

rdts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
model <- vlmc(rdts, alpha = 0.5)
direct representation with ctx_node objects
model_ctxs <- contexts(model)
model_ctxs
sapply(model_ctxs, cutoff, scale = "quantile")
sapply(model_ctxs, cutoff, scale = "native")
sapply(model_ctxs, function(x) metrics(x)$accuracy)
data.frame format
contexts(model, frequency = "total")
contexts(model, cutoff = "quantile")
contexts(model, cutoff = "native", metrics = TRUE)

context_number Number of contexts of a context tree

Description

This function returns the number of distinct contexts in a context tree.

Usage

context_number(ct)

Arguments

ct a context tree.

Value

the number of contexts of the tree.

Examples

rdts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
rdts_ctree <- ctx_tree(rdts, min_size = 1, max_depth = 3)
should be 8
context_number(rdts_ctree)

24 counts

context_number.covlmc
Contexts number of a VLMC with covariates

Description

This function returns the total number of contexts of a VLMC with covariates.

Usage

S3 method for class 'covlmc'
context_number(ct)

Arguments

ct a fitted covlmc model.

Value

the number of contexts present in the VLMC with covariates.

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 10)
should be 3
context_number(m_cov)

counts Report the distribution of values that follow occurrences of a
sequence

Description

This function reports the number of occurrences of the sequence represented by node in the
original time series used to build the associated context tree (not including a possible final
occurrence not followed by any value at the end of the original time series). In addition if
frequency=="detailed", the function reports the frequencies of each of the possible value
of the time series when they appear just after the sequence.

counts 25

Usage

counts(node, frequency = c("detailed", "total"), local = FALSE)

S3 method for class 'ctx_node'
counts(node, frequency = c("detailed", "total"), local = FALSE)

S3 method for class 'ctx_node_cpp'
counts(node, frequency = c("detailed", "total"), local = FALSE)

Arguments

node a ctx_node object as returned by find_sequence()

frequency specifies the counts to be included in the result. "total" gives the num-
ber of occurrences of the sequence in the original sequence. "detailed"
includes in addition the break down of these occurrences into all the pos-
sible states.

local specifies how the counts are computed. When local is FALSE (default
value) the counts include both counts that are specific to the context (if
any) and counts from the descendants of the context in the tree. When
local is TRUE the counts include only the number of times the context
appears without being the last part of a longer context.

Value

either an integer when frequency="total" which gives the total number of occurrences
of the sequence represented by node or a data.frame with a total column with the same
value and a column for each of the possible value of the original time series, reporting counts
in each column (see the description above).

See Also

contexts() and contexts.ctx_tree()

Examples

rdts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
rdts_tree <- ctx_tree(rdts, max_depth = 3, min_size = 5)
subseq <- find_sequence(rdts_tree, factor(c("A", "A"), levels = c("A", "B", "C")))
if (!is.null(subseq)) {

counts(subseq)
}

26 covariate_memory

covariate_depth Maximal covariate memory of a VLMC with covariates

Description

This function return the longest covariate memory used by a VLMC with covariates.

Usage

covariate_depth(model)

Arguments

model a covlmc object

Value

the longest covariate memory of this model

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
m_nocovariate <- vlmc(rdts)
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 10)
covariate_depth(m_cov)

covariate_memory Covariate memory length for a COVLMC context

Description

This function returns the length of the memory of a COVLMC context represented by a
ctx_node_covlmc object.

Usage

covariate_memory(node)

Arguments

node A ctx_node_covlmc object as returned by find_sequence() or contexts.covlmc()

Value

the memory length, an integer

covlmc 27

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 10)
ctxs <- contexts(m_cov)
get all the memory lengths
sapply(ctxs, covariate_memory)

covlmc Fit a Variable Length Markov Chain with Covariates (coVLMC)

Description

This function fits a Variable Length Markov Chain with covariates (coVLMC) to a discrete
time series coupled with a time series of covariates.

Usage

covlmc(
x,
covariate,
alpha = 0.05,
min_size = 5L,
max_depth = 100L,
keep_data = TRUE,
control = covlmc_control(...),
...

)

Arguments

x an object that can be interpreted as a discrete time series, such as an
integer vector or a dts object (see dts())

covariate a data frame of covariates.
alpha number in (0,1) (default: 0.05) cut off value in the pruning phase (in

quantile scale).
min_size number >= 1 (default: 5). Tune the minimum number of observations for

a context in the growing phase of the context tree (see below for details).
max_depth integer >= 1 (default: 100). Longest context considered in growing phase

of the context tree.
keep_data logical (defaults to TRUE). If TRUE, the original data are stored in the

resulting object to enable post pruning (see prune.covlmc()).
control a list with control parameters, see covlmc_control().
... arguments passed to covlmc_control().

28 covlmc

Details

The model is built using the algorithm described in Zanin Zambom et al. As for the
vlmc() approach, the algorithm builds first a context tree (see ctx_tree()). The min_size
parameter is used to compute the actual number of observations per context in the growing
phase of the tree. It is computed as min_size*(1+ncol(covariate)*d)*(s-1) where d
is the length of the context (a.k.a. the depth in the tree) and s is the number of states.
This corresponds to ensuring min_size observations per parameter of the logistic regression
during the estimation phase.

Then logistic models are adjusted in the leaves at the tree: the goal of each logistic model
is to estimate the conditional distribution of the next state of the times series given the
context (the recent past of the time series) and delayed versions of the covariates. A pruning
strategy is used to simplified the models (mainly to reduce the time window associated to
the covariates) and the tree itself.

Parameters specified by control are used to fine tune the behaviour of the algorithm.

Value

a fitted covlmc model.

Logistic models

By default, covlmc uses two different computing engines for logistic models:

• when the time series has only two states, covlmc uses stats::glm() with a binomial
link (stats::binomial());

• when the time series has at least three states, covlmc use VGAM::vglm() with a multi-
nomial link (VGAM::multinomial()).

Both engines are able to detect degenerate cases and lead to more robust results that using
nnet::multinom(). It is nevertheless possible to replace stats::glm() and VGAM::vglm()
with nnet::multinom() by setting the global option mixvlmc.predictive to "multinom"
(the default value is "glm"). Notice that while results should be comparable, there is no
guarantee that they will be identical.

References

• Bühlmann, P. and Wyner, A. J. (1999), ”Variable length Markov chains.” Ann. Statist.
27 (2) 480-513 doi:10.1214/aos/1018031204

• Zanin Zambom, A., Kim, S. and Lopes Garcia, N. (2022), ”Variable length Markov
chain with exogenous covariates.” J. Time Ser. Anal., 43 (2) 312-328 doi:10.1111/
jtsa.12615

See Also

cutoff.covlmc() and prune.covlmc() for post-pruning.

https://doi.org/10.1214/aos/1018031204
https://doi.org/10.1111/jtsa.12615
https://doi.org/10.1111/jtsa.12615

covlmc.default 29

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power,

probs = c(1 / 3, 2 / 3, 1)
)))
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 15)
draw(m_cov)
withr::with_options(

list(mixvlmc.predictive = "multinom"),
m_cov_nnet <- covlmc(rdts, rdts_cov, min_size = 15)

)
draw(m_cov_nnet)

covlmc.default Fit a Variable Length Markov Chain with Covariates (coVLMC)

Description

This function fits a Variable Length Markov Chain with covariates (coVLMC) to a discrete
time series coupled with a time series of covariates.

Usage

Default S3 method:
covlmc(

x,
covariate,
alpha = 0.05,
min_size = 5L,
max_depth = 100L,
keep_data = TRUE,
control = covlmc_control(...),
...

)

Arguments

x a numeric, character, factor or logical vector
covariate a data frame of covariates.
alpha number in (0,1) (default: 0.05) cut off value in the pruning phase (in

quantile scale).
min_size number >= 1 (default: 5). Tune the minimum number of observations for

a context in the growing phase of the context tree (see below for details).
max_depth integer >= 1 (default: 100). Longest context considered in growing phase

of the context tree.

30 covlmc.default

keep_data logical (defaults to TRUE). If TRUE, the original data are stored in the
resulting object to enable post pruning (see prune.covlmc()).

control a list with control parameters, see covlmc_control().
... arguments passed to covlmc_control().

Details

The model is built using the algorithm described in Zanin Zambom et al. As for the
vlmc() approach, the algorithm builds first a context tree (see ctx_tree()). The min_size
parameter is used to compute the actual number of observations per context in the growing
phase of the tree. It is computed as min_size*(1+ncol(covariate)*d)*(s-1) where d
is the length of the context (a.k.a. the depth in the tree) and s is the number of states.
This corresponds to ensuring min_size observations per parameter of the logistic regression
during the estimation phase.
Then logistic models are adjusted in the leaves at the tree: the goal of each logistic model
is to estimate the conditional distribution of the next state of the times series given the
context (the recent past of the time series) and delayed versions of the covariates. A pruning
strategy is used to simplified the models (mainly to reduce the time window associated to
the covariates) and the tree itself.
Parameters specified by control are used to fine tune the behaviour of the algorithm.

Value

a fitted covlmc model.

Logistic models

By default, covlmc uses two different computing engines for logistic models:

• when the time series has only two states, covlmc uses stats::glm() with a binomial
link (stats::binomial());

• when the time series has at least three states, covlmc use VGAM::vglm() with a multi-
nomial link (VGAM::multinomial()).

Both engines are able to detect degenerate cases and lead to more robust results that using
nnet::multinom(). It is nevertheless possible to replace stats::glm() and VGAM::vglm()
with nnet::multinom() by setting the global option mixvlmc.predictive to "multinom"
(the default value is "glm"). Notice that while results should be comparable, there is no
guarantee that they will be identical.

References

• Bühlmann, P. and Wyner, A. J. (1999), ”Variable length Markov chains.” Ann. Statist.
27 (2) 480-513 doi:10.1214/aos/1018031204

• Zanin Zambom, A., Kim, S. and Lopes Garcia, N. (2022), ”Variable length Markov
chain with exogenous covariates.” J. Time Ser. Anal., 43 (2) 312-328 doi:10.1111/
jtsa.12615

https://doi.org/10.1214/aos/1018031204
https://doi.org/10.1111/jtsa.12615
https://doi.org/10.1111/jtsa.12615

covlmc.dts 31

See Also

cutoff.covlmc() and prune.covlmc() for post-pruning.

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power,

probs = c(1 / 3, 2 / 3, 1)
)))
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 15)
draw(m_cov)
withr::with_options(

list(mixvlmc.predictive = "multinom"),
m_cov_nnet <- covlmc(rdts, rdts_cov, min_size = 15)

)
draw(m_cov_nnet)

covlmc.dts Fit a Variable Length Markov Chain with Covariates (coVLMC)

Description

This function fits a Variable Length Markov Chain with covariates (coVLMC) to a discrete
time series coupled with a time series of covariates.

Usage

S3 method for class 'dts'
covlmc(

x,
covariate,
alpha = 0.05,
min_size = 5L,
max_depth = 100L,
keep_data = TRUE,
control = covlmc_control(...),
...

)

Arguments

x a discrete time series represented by a dts object as created by dts()

covariate a data frame of covariates.
alpha number in (0,1) (default: 0.05) cut off value in the pruning phase (in

quantile scale).

32 covlmc.dts

min_size number >= 1 (default: 5). Tune the minimum number of observations for
a context in the growing phase of the context tree (see below for details).

max_depth integer >= 1 (default: 100). Longest context considered in growing phase
of the context tree.

keep_data logical (defaults to TRUE). If TRUE, the original data are stored in the
resulting object to enable post pruning (see prune.covlmc()).

control a list with control parameters, see covlmc_control().
... arguments passed to covlmc_control().

Details

The model is built using the algorithm described in Zanin Zambom et al. As for the
vlmc() approach, the algorithm builds first a context tree (see ctx_tree()). The min_size
parameter is used to compute the actual number of observations per context in the growing
phase of the tree. It is computed as min_size*(1+ncol(covariate)*d)*(s-1) where d
is the length of the context (a.k.a. the depth in the tree) and s is the number of states.
This corresponds to ensuring min_size observations per parameter of the logistic regression
during the estimation phase.
Then logistic models are adjusted in the leaves at the tree: the goal of each logistic model
is to estimate the conditional distribution of the next state of the times series given the
context (the recent past of the time series) and delayed versions of the covariates. A pruning
strategy is used to simplified the models (mainly to reduce the time window associated to
the covariates) and the tree itself.
Parameters specified by control are used to fine tune the behaviour of the algorithm.

Value

a fitted covlmc model.

Logistic models

By default, covlmc uses two different computing engines for logistic models:

• when the time series has only two states, covlmc uses stats::glm() with a binomial
link (stats::binomial());

• when the time series has at least three states, covlmc use VGAM::vglm() with a multi-
nomial link (VGAM::multinomial()).

Both engines are able to detect degenerate cases and lead to more robust results that using
nnet::multinom(). It is nevertheless possible to replace stats::glm() and VGAM::vglm()
with nnet::multinom() by setting the global option mixvlmc.predictive to "multinom"
(the default value is "glm"). Notice that while results should be comparable, there is no
guarantee that they will be identical.

References

• Bühlmann, P. and Wyner, A. J. (1999), ”Variable length Markov chains.” Ann. Statist.
27 (2) 480-513 doi:10.1214/aos/1018031204

https://doi.org/10.1214/aos/1018031204

covlmc_control 33

• Zanin Zambom, A., Kim, S. and Lopes Garcia, N. (2022), ”Variable length Markov
chain with exogenous covariates.” J. Time Ser. Anal., 43 (2) 312-328 doi:10.1111/
jtsa.12615

See Also

cutoff.covlmc() and prune.covlmc() for post-pruning.

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
power_dts <- dts(cut(pc$active_power, breaks = c(0, quantile(pc$active_power,

probs = c(1 / 3, 2 / 3, 1)
))))
power_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(power_dts, power_cov, min_size = 15)
draw(m_cov)

covlmc_control Control for coVLMC fitting

Description

This function creates a list with parameters used to fine tune the coVLMC fitting algorithm.

Usage

covlmc_control(pseudo_obs = 1)

Arguments

pseudo_obs number of fake observations of each state to add to the observed ones.

Details

pseudo_obs is used to regularize the probability estimations when a context is only observed
followed by always the same state. Transition probabilities are computed after adding
pseudo_obs pseudo observations of each of the states (including the observed one). This
corresponds to a Bayesian posterior mean estimation with a Dirichlet prior.

Value

a list.

https://doi.org/10.1111/jtsa.12615
https://doi.org/10.1111/jtsa.12615

34 ctx_tree

Examples
rdts <- rep(c(0, 1), 100)
rdts_cov <- data.frame(y = rep(0, length(rdts)))
default_model <- covlmc(rdts, rdts_cov)
contexts(default_model, type = "data.frame", model = "coef")$coef
control <- covlmc_control(pseudo_obs = 10)
model <- covlmc(rdts, rdts_cov, control = control)
contexts(model, type = "data.frame", model = "coef")$coef

ctx_tree Build a context tree for a discrete time series

Description

This function builds a context tree for a time series.

Usage

ctx_tree(
x,
min_size = 2L,
max_depth = 100L,
keep_position = TRUE,
backend = getOption("mixvlmc.backend", "R"),
...

)

Arguments

x an object that can be interpreted as a discrete time series, such as an
integer vector or a dts object (see dts())

min_size integer >= 1 (default: 2). Minimum number of observations for a context
to be included in the tree.

max_depth integer >= 1 (default: 100). Maximum length of a context to be included
in the tree.

keep_position logical (default: TRUE). Should the context tree keep the position of the
contexts.

backend ”R” or ”C++” (default: as specified by the ”mixvlmc.backend” option).
Specifies the implementation used to represent the context tree and to
built it. See details.

... additional parameters

Details

The tree represents all the sequences of symbols/states of length smaller than max_depth
that appear at least min_size times in the time series and stores the frequencies of the
states that follow each context. Optionally, the positions of the contexts in the time series
can be stored in the tree.

ctx_tree.default 35

Value

a context tree (of class that inherits from ctx_tree).

Back ends

Two back ends are available to compute context trees:

• the ”R” back end represents the tree in pure R data structures (nested lists) that be
easily processed further in pure R (C++ helper functions are used to speed up the
construction).

• the ”C++” back end represents the tree with C++ classes. This back end is considered
experimental. The tree is built with an optimised suffix tree algorithm which speeds
up the construction by at least a factor 10 in standard settings. As the tree is kept
outside of R direct reach, context trees built with the C++ back end must be restored
after a saveRDS()/readRDS() sequence. This is done automatically by recomputing
completely the context tree.

Examples

rdts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
get all contexts of length 2
rdts_ctree <- ctx_tree(rdts, min_size = 1, max_depth = 2)
draw(rdts_ctree)

ctx_tree.default Build a context tree for a discrete time series

Description

This function builds a context tree for a time series.

Usage

Default S3 method:
ctx_tree(

x,
min_size = 2L,
max_depth = 100L,
keep_position = TRUE,
backend = getOption("mixvlmc.backend", "R"),
...

)

36 ctx_tree.default

Arguments

x a numeric, character, factor or logical vector
min_size integer >= 1 (default: 2). Minimum number of observations for a context

to be included in the tree.
max_depth integer >= 1 (default: 100). Maximum length of a context to be included

in the tree.
keep_position logical (default: TRUE). Should the context tree keep the position of the

contexts.
backend ”R” or ”C++” (default: as specified by the ”mixvlmc.backend” option).

Specifies the implementation used to represent the context tree and to
built it. See details.

... additional parameters

Details

The tree represents all the sequences of symbols/states of length smaller than max_depth
that appear at least min_size times in the time series and stores the frequencies of the
states that follow each context. Optionally, the positions of the contexts in the time series
can be stored in the tree.

Value

a context tree (of class that inherits from ctx_tree).

Back ends

Two back ends are available to compute context trees:

• the ”R” back end represents the tree in pure R data structures (nested lists) that be
easily processed further in pure R (C++ helper functions are used to speed up the
construction).

• the ”C++” back end represents the tree with C++ classes. This back end is considered
experimental. The tree is built with an optimised suffix tree algorithm which speeds
up the construction by at least a factor 10 in standard settings. As the tree is kept
outside of R direct reach, context trees built with the C++ back end must be restored
after a saveRDS()/readRDS() sequence. This is done automatically by recomputing
completely the context tree.

Examples

rdts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
get all contexts of length 2
rdts_ctree <- ctx_tree(rdts, min_size = 1, max_depth = 2)
draw(rdts_ctree)

ctx_tree.dts 37

ctx_tree.dts Build a context tree for a discrete time series

Description

This function builds a context tree for a time series.

Usage

S3 method for class 'dts'
ctx_tree(

x,
min_size = 2L,
max_depth = 100L,
keep_position = TRUE,
backend = getOption("mixvlmc.backend", "R"),
...

)

Arguments

x a discrete time series represented by a dts object as created by dts()

min_size integer >= 1 (default: 2). Minimum number of observations for a context
to be included in the tree.

max_depth integer >= 1 (default: 100). Maximum length of a context to be included
in the tree.

keep_position logical (default: TRUE). Should the context tree keep the position of the
contexts.

backend ”R” or ”C++” (default: as specified by the ”mixvlmc.backend” option).
Specifies the implementation used to represent the context tree and to
built it. See details.

... additional parameters

Details

The tree represents all the sequences of symbols/states of length smaller than max_depth
that appear at least min_size times in the time series and stores the frequencies of the
states that follow each context. Optionally, the positions of the contexts in the time series
can be stored in the tree.

Value

a context tree (of class that inherits from ctx_tree).

38 cutoff

Back ends

Two back ends are available to compute context trees:

• the ”R” back end represents the tree in pure R data structures (nested lists) that be
easily processed further in pure R (C++ helper functions are used to speed up the
construction).

• the ”C++” back end represents the tree with C++ classes. This back end is considered
experimental. The tree is built with an optimised suffix tree algorithm which speeds
up the construction by at least a factor 10 in standard settings. As the tree is kept
outside of R direct reach, context trees built with the C++ back end must be restored
after a saveRDS()/readRDS() sequence. This is done automatically by recomputing
completely the context tree.

Examples

x_dts <- dts(c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0))
get all contexts of length 2
ctree <- ctx_tree(x_dts, min_size = 1, max_depth = 2)
draw(ctree)

cutoff Cut off values for VLMC like model

Description

This generic function returns one or more cut off values that are guaranteed to have an
effect on the model passed to the function when a simplification procedure is applied (in
general a tree pruning operation as provided by prune()).

Usage

cutoff(model, ...)

Arguments

model a model.
... additional arguments for the cutoff function implementations

Details

The exact definition of what is a cut off value depends on the model type and is documented
in concrete implementation of the function.

Value

a cut off value or a vector of cut off values.

cutoff.covlmc 39

See Also

prune()

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power,

breaks = c(0, quantile(pc$active_power,
probs = c(0.25, 0.5, 0.75, 1)

))
)
model <- vlmc(rdts)
draw(model)
model_cuts <- cutoff(model)
model_2 <- prune(model, model_cuts[2])
draw(model_2)

cutoff.covlmc Cut off values for pruning the context tree of a VLMC with
covariates

Description

This function returns all the cut off values that should induce a pruning of the context tree
of a VLMC with covariates.

Usage

S3 method for class 'covlmc'
cutoff(model, raw = FALSE, tolerance = .Machine$double.eps^0.5, ...)

Arguments

model a fitted COVLMC model.
raw specify whether the returned values should be limit values computed in

the model or modified values that guarantee pruning (see details)
tolerance specify the minimum separation between two consecutive values of the

cut off in native mode (before any transformation). See details.
... additional arguments for the cutoff function.

Details

Notice that the list of cut off values returned by the function is not as complete as the one
computed for a VLMC without covariates. Indeed, pruning the COVLMC tree creates new
pruning opportunities that are not evaluated during the construction of the initial model,
while all pruning opportunities are computed during the construction of a VLMC context
tree. Nevertheless, the largest value returned by the function is guaranteed to produce the
least pruned tree consistent with the reference one.

40 cutoff.ctx_node

For large COVLMC, some cut off values can be almost identical, with a difference of the
order of the machine epsilon value. The tolerance parameter is used to keep only val-
ues that are different enough. This is done in the quantile scale, before transformations
implemented when raw is FALSE.

Notice that the loglikelihood scale is not directly useful in COVLMC as the differences in
model sizes are not constant through the pruning process. As a consequence, this function
does not provide mode parameter, contrarily to cutoff.vlmc().

Setting raw to TRUE removes the small perturbation that are subtracted from the log-
likelihood ratio values computed from the COVLMC (in quantile scale).

As automated model selection is provided by tune_covlmc(), the direct use of cutoff
should be reserved to advanced exploration of the set of trees that can be obtained from
a complex one, e.g. to implement model selection techniques that are not provided by
tune_covlmc().

Value

a vector of cut off values, NULL if none can be computed

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
m_nocovariate <- vlmc(rdts)
draw(m_nocovariate)
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 5)
draw(m_cov)
cutoff(m_cov)

cutoff.ctx_node Cut off value for pruning a node in the context tree of a VLMC

Description

This function returns the cut off value associated to a specific node in the context tree
interpreted as a VLMC. The node is represented by a ctx_node object as returned by
find_sequence() or contexts(). For details, see cutoff.vlmc().

Usage

S3 method for class 'ctx_node'
cutoff(model, scale = c("quantile", "native"), raw = FALSE, ...)

cutoff.vlmc 41

Arguments

model a ctx_node object as returned by find_sequence()
scale specify whether the results should be ”native” log likelihood ratio values

or expressed in a ”quantile” scale of a chi-squared distribution (defaults
to ”quantile”).

raw specify whether the returned values should be limit values computed
in the model or modified values that guarantee pruning (see details in
cutoff.vlmc())

... additional arguments for the cutoff function.

Value

a cut off value

See Also

cutoff()

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power,

breaks = c(0, quantile(pc$active_power,
probs = c(0.25, 0.5, 0.75, 1)

))
)
model <- vlmc(rdts)
model_ctxs <- contexts(model)
cutoff(model_ctxs[[1]])
cutoff(model_ctxs[[2]], scale = "native", raw = TRUE)

cutoff.vlmc Cut off values for pruning the context tree of a VLMC

Description

This function returns a collection of cut off values that are guaranteed to induce all valid
pruned trees of the context tree of a VLMC. Pruning is implemented by the prune()
function.

Usage

S3 method for class 'vlmc'
cutoff(

model,
scale = c("quantile", "native"),
raw = FALSE,

42 cutoff.vlmc

tolerance = .Machine$double.eps^0.5,
...

)

S3 method for class 'vlmc_cpp'
cutoff(

model,
scale = c("quantile", "native"),
raw = FALSE,
tolerance = .Machine$double.eps^0.5,
...

)

Arguments

model a fitted VLMC model.
scale specify whether the results should be ”native” log likelihood ratio values

or expressed in a ”quantile” scale of a chi-squared distribution (defaults
to ”quantile”).

raw specify whether the returned values should be limit values computed in
the model or modified values that guarantee pruning (see details)

tolerance specify the minimum separation between two consecutive values of the
cut off in native mode (before any transformation). See details.

... additional arguments for the cutoff function.

Details

By default, the function returns values that can be used directly to induce pruning in
the context tree. This is done by computing the log likelihood ratios used by the context
algorithm on the reference VLMC and by keeping the relevant ones. From them the function
selects intermediate values that are guaranteed to generate via pruning all the VLMCmodels
that could be generated by using larger values of the cutoff parameter that was used to
build the reference model (or smaller values of the alpha parameter in ”quantile” scale).
Setting the raw parameter to TRUE removes this operation on the values and asks the
function to return the relevant log likelihood ratios.
For large VLMC, some log likelihood ratios can be almost identical, with a difference of
the order of the machine epsilon value. The tolerance parameter is used to keep only
values that are different enough. This is done in the native scale, before transformations
implemented when raw is FALSE.
As automated model selection is provided by tune_vlmc(), the direct use of cutoff should
be reserved to advanced exploration of the set of trees that can be obtained from a complex
one, e.g. to implement model selection techniques that are not provided by tune_vlmc().

Value

a vector of cut off values.

depth 43

See Also

prune() and tune_vlmc()

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power,

breaks = c(0, quantile(pc$active_power,
probs = c(0.25, 0.5, 0.75, 1)

))
)
model <- vlmc(rdts)
draw(model)
model_cuts <- cutoff(model)
model_2 <- prune(model, model_cuts[2])
draw(model_2)

depth Depth of a context tree

Description

This function returns the depth of a context tree, i.e. the length of the longest context
represented in the tree.

Usage

depth(ct)

Arguments

ct a context tree.

Value

the depth of the tree.

Examples

rdts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
rdts_ctree <- ctx_tree(rdts, min_size = 1, max_depth = 3)
should be 3
depth(rdts_ctree)

44 draw

draw Text based representation of a context tree

Description

This function ’draws’ a context tree as a text.

Usage

draw(ct, format, control = draw_control(), ...)

Arguments

ct a context tree.
format a character string that specifies the output format of the function. Possi-

ble values are "text" (default) and "latex". See details.
control a list of low level control parameters of the text representation. See details

and draw_control().
... additional arguments for draw.

Details

The function uses different text based formats (plain ”ascii art” and LaTeX) to represent
the context tree. Fine tuning of the representation can be done via the draw_control()
function.
In addition to the structure of the context tree, draw() can represent information attached
to the nodes (contexts and partial contexts). This is controlled by additional parameters
depending on the type of the context tree. In general, parameters given directly to draw()
specify what information is represented while details on how this representation is made
can be controlled via the control parameter and the associated draw_control() function.

Value

the context tree (invisibly).

Format

The format parameter specifies the format used for the textual output. With the default
value "text" the output is produced in ”ascii art” using by default only ascii characters
(notice that draw_control() can be used to specified non ascii characters, but this is
discouraged).
With the latex value, the output is produced in LaTeX, leveraging the forest Latex package
(see https://ctan.org/pkg/forest). Each call to draw() produces a full forest LaTeX
environment. This can be included as is in a LaTeX document, provided the forest package
is loaded in the preamble of the document. The LaTeX output is sanitized to avoid potential
problems induced by special characters in the names of the states of the context tree.

https://ctan.org/pkg/forest
https://ctan.org/pkg/forest

draw.covlmc 45

Examples
rdts <- sample(c(0, 1), 100, replace = TRUE)
ctree <- ctx_tree(rdts, min_size = 10, max_depth = 2)
draw(ctree)
rdts_c <- sample(c("A", "B", "CD"), 100, replace = TRUE)
ctree_c <- ctx_tree(rdts_c, min_size = 10, max_depth = 2)
draw(ctree_c, control = draw_control(digits = 2))
LaTeX output
draw(ctree_c, "latex")

draw.covlmc Text based representation of a covlmc model

Description

This function ’draws’ a covlmc as a text.

Usage

S3 method for class 'covlmc'
draw(

ct,
format,
control = draw_control(),
model = c("coef", "full"),
p_value = FALSE,
with_state = FALSE,
constant_as_prob = TRUE,
...

)

Arguments

ct a fitted covlmc model.
format a character string that specifies the output format of the function. Possi-

ble values are "text" (default) and "latex". See details.
control a list of low level control parameters of the text representation. See details

and draw_control().
model this parameter controls the display of logistic models associated to nodes

(accepted values: "coeff", "full" and NULL). The interpretation of the
parameter depends on the format, see below for details.

p_value specifies whether the p-values of the likelihood ratio tests conducted dur-
ing the covlmc construction must be included in the representation (de-
faults to FALSE).

with_state specifies whether to display the state associated to each dimension of the
logistic model (see details).

46 draw.covlmc

constant_as_prob
specifies how to represent constant logistic models for format="text"
(defaults to TRUE, see details). Disregarded when format="latex".

... additional arguments for draw.

Details

The function uses different text based formats (plain ”ascii art” and LaTeX) to represent
the context tree. Fine tuning of the representation can be done via the draw_control()
function.
Contrarily to draw() functions adapted to context trees draw.ctx_tree() and VLMC
draw.vlmc(), the present function does not try to produce similar results for the "text"
format and the "latex" format as the "text" format is intrinsically more limited in terms
of model representations. This is detailed below.

Format

The format parameter specifies the format used for the textual output. With the default
value "text" the output is produced in ”ascii art” using the charset specified by the global
option mixvlmc.charset.
With the latex value, the output is produced in LaTeX, leveraging the forest Latex package
(see https://ctan.org/pkg/forest). Each call to draw.covlmc() produces a full forest
LaTeX environment. This can be included as is in a LaTeX document, provided the forest
package is loaded in the preamble of the document. The LaTeX output is sanitized to avoid
potential problems induced by special characters in the names of the states of the context
tree.

"text" format

Parameters:
When format="text" the parameters are interpreted as follows:
• model: the default model="coef" represents only the coefficients of the logistic models

associated to each context. model="full" includes the name of the variables in the
representation. Setting model=NULL removes the model representations. Additional
parameters can be used to tweak model representations (see below).

• constant_as_prob: specifies whether to represent logistic models that do not use
covariates (a.k.a. constant models) using the probability distributions they induce
on the state space (default behaviour with constant_as_prob=TRUE) or as normal
models (when set to FALSE). This is not taken into account when model is not set to
"coef".

• fields of the control list (including the charset):
– intercept : character(s) used to represent the intercept when model="full"
– intercept_sep: character(s) used to separate the intercept from the other coef-

ficients in model representation.
– time_sep: character(s) used to split the coefficients list by blocks associated to

time delays in the covariate inclusion into the logistic model. The first block
contains the intercept(s), the second block the covariate values a time t-1, the
third block at time t-2, etc.

https://ctan.org/pkg/forest
https://ctan.org/pkg/forest

draw.covlmc 47

– level_sep: character(s) used separate levels from model, see below.
– open_p_value and close_p_value: delimiters used around the p-values when

p_value=TRUE
– open_model and close_model: delimiters around the model when model is not

NULL

State representation:
When model is not NULL, the coefficients of the logistic models are presented, organized in
rows associated to states. One state is used as the reference state and the logistic model
aims at predicting the ratio of probability between another state and the reference one (in
log scale). When with_state is TRUE, the display includes for each row of coefficients the
target state. This is useful when using e.g. VGAM::vglm() as unused levels of the target
variable will be automatically dropped from the model, leading to a reduce number of
rows. The reference state is either shown on the first row if model is "full" or after the
state on each row if model is "coef". States are separated from the model representation
by the character(s) specified in level_sep in the control list.

"latex" format

Parameters:
When format="latex" the parameters are interpreted as follows:

• model: the models are always represented completely in the LaTeX export unless
model is set to NULL.

• constant_as_prob: in the LaTeX export, constant logistic models are always repre-
sented by the corresponding probability distribution on the state space, regardless of
the value of constant_as_prob.

• fields of the control list:
– orientation: specifies the orientation of the tree, either the default "vertical"

(expanding from top to bottom) or "horizontal" (expanding from right to left);
– tab_orientation: specifies the orientation of the tables used to represent model

coefficients in the tree, either the default "vertical" (covariates are listed on one
column) or "horizontal" (covariates are listed on one row);

– fontsize and prob_fontsize handle the size of the fonts used for the states and
for the models, see draw_control() for details;

– decoration can be used to add borders around states, see draw_control() for
details;

State representation:
When model is not NULL, the coefficients of the logistic models are presented, organized
in rows or in columns (depending tab_orientation) on associated to states. One state is
used as the reference state and the logistic model aims at predicting the ratio of probability
between another state and the reference one (in log scale). When with_state is TRUE,
the display includes for each row/column of coefficients the target state. The reference
state is shown on the first row/column.

48 draw.ctx_tree_cpp

Variable representation

When the representation includes the names of the variables used by the logistic models,
they are the one generated by the underlying logistic model, e.g. stats::glm(). Numerical
variable names are used as is, while factors have levels appended. The intercept is denoted
by the intercept member of the control list whenformat="text" (as part of the charset).
It is always represented by (I) when format="latex".
When format="text", the time delays are represented by an underscore followed by the
time delay. For instance if the model uses the numerical covariate y with two delays, it will
appear with two variables y_1 and y_2.
When format="latex", the representation uses a temporal subscript of the form t-1, t-2,
etc.

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power,

breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1)))
)
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 5)
draw(m_cov, control = draw_control(digits = 3))
draw(m_cov, model = NULL)
draw(m_cov, p_value = TRUE)
draw(m_cov, p_value = FALSE, control = draw_control(digits = 2))
draw(m_cov, model = "full", control = draw_control(digits = 3))
draw(m_cov, format = "latex", control = draw_control(orientation = "h"))

draw.ctx_tree_cpp Text based representation of a context tree

Description

This function ’draws’ a context tree as a text.

Usage

S3 method for class 'ctx_tree_cpp'
draw(ct, format, control = draw_control(), frequency = NULL, ...)

S3 method for class 'ctx_tree'
draw(ct, format, control = draw_control(), frequency = NULL, ...)

Arguments

ct a context tree.
format a character string that specifies the output format of the function. Possi-

ble values are "text" (default) and "latex". See details.

draw.ctx_tree_cpp 49

control a list of low level control parameters of the text representation. See details
and draw_control().

frequency this parameter controls the display of node level information in the tree.
The default NULL value does not include anything. Setting frequency to
"total" includes the frequency of the (partial) context of the node, while
"detailed" includes the frequency of the states that follow the context
(as in contexts.ctx_tree()).

... additional arguments for draw.

Details

The function uses different text based formats (plain ”ascii art” and LaTeX) to represent
the context tree. Fine tuning of the representation can be done via the draw_control()
function.
In addition to the structure of the context tree, draw() can represent information attached
to the nodes (contexts and partial contexts). This is controlled by additional parameters
depending on the type of the context tree. In general, parameters given directly to draw()
specify what information is represented while details on how this representation is made
can be controlled via the control parameter and the associated draw_control() function.

Value

the context tree (invisibly).

Format

The format parameter specifies the format used for the textual output. With the default
value "text" the output is produced in ”ascii art” using by default only ascii characters
(notice that draw_control() can be used to specified non ascii characters, but this is
discouraged).
With the latex value, the output is produced in LaTeX, leveraging the forest Latex package
(see https://ctan.org/pkg/forest). Each call to draw() produces a full forest LaTeX
environment. This can be included as is in a LaTeX document, provided the forest package
is loaded in the preamble of the document. The LaTeX output is sanitized to avoid potential
problems induced by special characters in the names of the states of the context tree.

Examples
rdts_c <- sample(c("A", "B", "CD"), 100, replace = TRUE)
ctree_c <- ctx_tree(rdts_c, min_size = 10, max_depth = 2)
draw(ctree_c, frequency = "total")
draw(ctree_c, frequency = "detailed")
LaTeX output
draw(ctree_c, "latex", frequency = "detailed")
rdts_c <- sample(c("A$", "_{B", "{C}_{D}"), 100, replace = TRUE)
ctree_c <- ctx_tree(rdts_c, min_size = 10, max_depth = 2)
the LaTeX output is sanitized
draw(ctree_c, "latex", frequency = "detailed")

https://ctan.org/pkg/forest
https://ctan.org/pkg/forest

50 draw.vlmc

draw.vlmc Text based representation of a vlmc

Description

This function ’draws’ a context tree as a text.

Usage

S3 method for class 'vlmc'
draw(ct, format, control = draw_control(), prob = TRUE, ...)

S3 method for class 'vlmc_cpp'
draw(ct, format, control = draw_control(), prob = TRUE, ...)

Arguments

ct a fitted vlmc.
format a character string that specifies the output format of the function. Possi-

ble values are "text" (default) and "latex". See details.
control a list of low level control parameters of the text representation. See details

and draw_control().
prob this parameter controls the display of node level information in the tree.

The default prob=TRUE represents the conditional distribution of the states
given the (partial) context associated to the node. Setting prob=FALSE
replaces the conditional distribution by the frequency of the states that
follow the context as in draw.ctx_tree(). Setting prob=NULL removes
all additional information.

... additional arguments for draw.

Details

The function uses different text based formats (plain ”ascii art” and LaTeX) to represent
the context tree. Fine tuning of the representation can be done via the draw_control()
function.
In addition to the structure of the context tree, draw() can represent information attached
to the nodes (contexts and partial contexts). This is controlled by additional parameters
depending on the type of the context tree. In general, parameters given directly to draw()
specify what information is represented while details on how this representation is made
can be controlled via the control parameter and the associated draw_control() function.

Value

the context tree (invisibly).

draw_control 51

Format

The format parameter specifies the format used for the textual output. With the default
value "text" the output is produced in ”ascii art” using by default only ascii characters
(notice that draw_control() can be used to specified non ascii characters, but this is
discouraged).
With the latex value, the output is produced in LaTeX, leveraging the forest Latex package
(see https://ctan.org/pkg/forest). Each call to draw() produces a full forest LaTeX
environment. This can be included as is in a LaTeX document, provided the forest package
is loaded in the preamble of the document. The LaTeX output is sanitized to avoid potential
problems induced by special characters in the names of the states of the context tree.

Examples

rdts <- sample(c("A", "B", "C"), 500, replace = TRUE)
model <- vlmc(rdts, alpha = 0.05)
draw(model)
draw(model, prob = FALSE)
draw(model, prob = NULL)

draw_control Control parameters for draw

Description

This function returns a list used to fine tune the draw() function behaviour.

Usage

draw_control(
digits = 4,
charset = NULL,
orientation = c("vertical", "horizontal"),
tabular = TRUE,
tab_orientation = c("vertical", "horizontal"),
decoration = c("none", "rectangle", "circle", "ellipse"),
fontsize = "normalsize",
prob_fontsize = "small"

)

Arguments

digits numerical parameters and p-values are represented using the base::signif()
function, using the number of significant digits specified with this param-
eter (defaults to 4).

charset specifies the characters used for the ”ascii art” represention when the
format is ”text”, see details.

https://ctan.org/pkg/forest
https://ctan.org/pkg/forest

52 draw_control

orientation specifies the global orientation of the tree, either ”vertical” (default) or
”horizontal” (”latex”).

tabular if TRUE (default value), the ”latex” format will use tables for each node,
with one row for the state value and other rows for additional information
(such as the conditional probability associated to the context). Notice
that draw.covlmc() always uses tables regardless of the value of tabular.

tab_orientation
specifies the way the models are represented when used by draw.covlmc()
(”latex”). The default value is "vertical": this is well adapted to models
with long covariate dependencies (see covariate_depth()). The other
possible value is "horizontal".

decoration specifies node decoration in the ”latex” format, see details.
fontsize font size for the state names in the ”latex” format (using latex standard

font size, default to "normalsize").
prob_fontsize font size for the context counts, probabilities or models in the ”latex”

format (using latex standard font size, defaults to "small").

Details

Parameters are generally specific to the format used for draw(). If this is the case, the
format is given at the end of the parameter description. Some parameters are also specific
to some functions inheriting from draw().

Value

a list

Decoration

The LaTeX format ("latex") can ”decorate” the nodes of the context tree by drawing
borders. We support only basic decorations, but in theory all TikZ possibilities could be
used (see the documentation of the forest LaTeX package). Supported decorations:

• "none": default, no decoration;
• "rectangle": adds a rectangular border to all nodes;
• "circle": adds a circular border to all nodes;
• "ellipse": adds an ellipsoidal border to all nodes.

Charset

The ”ascii art” format ("text") uses a collection of characters to display a context tree.
The default collection is specified by the package option "mixvlmc.charset" and is used
when charset=NULL (default value). If charset is set to a character value, this value is
used to select the collection in the same way that "mixvlmc.charset" specifies it:

• "ascii": the collection uses only standard ASCII characters and should be compatible
with all environments;

• "utf8": the collection uses UTF-8 symbols and needs a compatible display.

https://ctan.org/pkg/forest

dts 53

Finally, charset can a user supplied list of characters as the one returned by charset_ascii()
and charset_utf8().

See Also

draw(), charset_ascii() and charset_utf8().

Examples
draw_control(digits = 2, tabular = FALSE)

dts Convert a vector to a discrete time series.

Description

This function creates a representation of a discrete time series that can be further processed
by model estimation functions.

Usage

dts(x, vals = NULL)

Arguments

x a discrete time series; can be numeric, character, factor or logical.
vals the set of values that can be taken by the time series, a.k.a. the state

space, see details (defaults to NULL)

Details

The discrete time series x can be a vector of numeric, character, factor or logical type. If
the state space of the series is not specified, that is when vals is NULL, it is computed in a
way that depends on the type of x:

• for a factor, vals is set to the levels() of x;
• for a logical vector, vals is set to c(FALSE, TRUE);
• for other types, vals is set to all the unique values taken by the time series (as returned

by sort(unique(x))).

If vals is specified, the function makes sure that x contains only the specified values.

Value

a discrete time series (of class that inherits from dts).

Examples
x_dts <- dts(sample(c("A", "B"), 20, replace = TRUE))
x_dts

54 find_sequence

dts_data Extract the plain discrete time series from a dts object

Description

This function returns a copy of the discrete time series used to build the dts object (see
dts()).

Usage

dts_data(x)

Arguments

x a dts object

Value

a vector representing the time seris

Examples
raw_dts <- sample(c("A", "B", "C"), 50, replace = TRUE)
odts <- dts(raw_dts)
back_to_raw <- dts_data(odts)
should be TRUE
identical(raw_dts, back_to_raw)

find_sequence Find the node of a sequence in a context tree

Description

This function checks whether the sequence ctx is represented in the context tree ct. If this
is the case, it returns a description of matching node, an object of class ctx_node. If the
sequence is not represented in the tree, the function return NULL.

Usage

find_sequence(ct, ctx, reverse = FALSE, ...)

S3 method for class 'ctx_tree'
find_sequence(ct, ctx, reverse = FALSE, ...)

S3 method for class 'ctx_tree_cpp'
find_sequence(ct, ctx, reverse = FALSE, ...)

find_sequence.covlmc 55

Arguments

ct a context tree.
ctx a sequence to search in the context tree
reverse specifies whether the sequence ctx is given the temporal order (FALSE,

default value) or in the reverse temporal order (TRUE). See the dedicated
section.

... additional parameters for the find_sequence function

Details

The function looks for sequences in general. The is_context() function can be used on
the resulting object to test if the sequence is in addition a proper context.

Value

an object of class ctx_node if the sequence ctx is represented in the context tree, NULL
when this is not the case.

State order in a sequence

sequence are given by default in the temporal order and not in the ”reverse” order used by
many VLMC research papers: older values are on the left. For instance, the context c(1,
0) is reported if the sequence 0, then 1 appeared in the time series used to build the context
tree. In the present function, reverse refers both to the order used for the ctx parameter
and for the default order used by the resulting ctx_node object.

Examples
rdts <- c("A", "B", "C", "A", "A", "B", "B", "C", "C", "A")
rdts_tree <- ctx_tree(rdts, max_depth = 3)
find_sequence(rdts_tree, "A")
returns NULL as "A" "C" does not appear in rdts
find_sequence(rdts_tree, c("A", "C"))

find_sequence.covlmc Find the node of a sequence in a COVLMC context tree

Description

This function checks whether the sequence ctx is represented in the context tree of the
COVLMC model ct. If this is the case, it returns a description of matching node, an object
of class ctx_node_covlmc. If the sequence is not represented in the tree, the function return
NULL.

Usage

S3 method for class 'covlmc'
find_sequence(ct, ctx, reverse = FALSE, ...)

56 find_sequence.covlmc

Arguments

ct a context tree.

ctx a sequence to search in the context tree

reverse specifies whether the sequence ctx is given the temporal order (FALSE,
default value) or in the reverse temporal order (TRUE). See the dedicated
section.

... additional parameters for the find_sequence function

Details

The function looks for sequences in general. The is_context() function can be used on
the resulting object to test if the sequence is in addition a proper context.

Value

an object of class ctx_node_covlmc if the sequence ctx is represented in the context tree,
NULL when this is not the case

State order in a sequence

sequence are given by default in the temporal order and not in the ”reverse” order used by
many VLMC research papers: older values are on the left. For instance, the context c(1,
0) is reported if the sequence 0, then 1 appeared in the time series used to build the context
tree. In the present function, reverse refers both to the order used for the ctx parameter
and for the default order used by the resulting ctx_node object.

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 10)

not in the tree
vals <- states(m_cov)
find_sequence(m_cov, c(vals[2], vals[2]))
in the tree but not a context
node <- find_sequence(m_cov, c(vals[1]))
node
is_context(node)
in the tree and a context
node <- find_sequence(m_cov, c(vals[1], vals[1]))
node
is_context(node)
model(node)

globalearthquake 57

globalearthquake Significant Earthquake Dataset

Description

A data set containing Earthquake that have occured during the period of 1900-2022 with
GPS coordinates and magnitudes.

Usage

globalearthquake

Format

A data frame with 98785 rows and 12 variables:

date_time Date and time in POSIXct format
latitude latitude of the earthquake, from -90° to 90°
longitude longitude of the earthquake, from -180° to 180°
mag the magnitude of the earthquake, indicating its strenth
Date date when the seisme occured
nbweeks number of weeks since 1900/01/01
year year
month month of the year
month_day day of the month
week week number
week_day day of the week from 1 = Sunday to 7 = Saturday
year_day day of the year from 1 to 366

Details

This is a compiled version of the full data set available on U.S. Geological Survey Earthquake
Events (USGS) which is in the public domain.
The data set contains only the earthquake between 1900 and 2022 with a magnitude higher
than 5.

Source

Earthquake Catalog, U.S. Geological Survey, Department of the Interior. https://www.
usgs.gov/programs/earthquake-hazards

https://www.usgs.gov/programs/earthquake-hazards
https://www.usgs.gov/programs/earthquake-hazards
https://www.usgs.gov/information-policies-and-instructions/copyrights-and-credits
https://www.usgs.gov/programs/earthquake-hazards
https://www.usgs.gov/programs/earthquake-hazards

58 is_covlmc

is_context Report the nature of a node in a context tree

Description

This function returns TRUE if the node is a proper context, FALSE in the other case.

Usage

is_context(node)

Arguments

node a ctx_node object as returned by find_sequence()

Value

TRUE if the node node is a proper context, FALSE when this is not the case

Examples
rdts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
rdts_ctree <- ctx_tree(rdts, min_size = 1, max_depth = 3)
draw(rdts_ctree)
0, 0 is a context but 1, 0 is not
is_context(find_sequence(rdts_ctree, c(0, 0)))
is_context(find_sequence(rdts_ctree, c(1, 0)))

is_covlmc Test if the object is a covlmc model

Description

This function returns TRUE for VLMC models with covariates and FALSE for other objects.

Usage

is_covlmc(x)

Arguments

x an R object.

Value

TRUE for VLMC models with covariates.

is_ctx_tree 59

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 5)
should be true
is_ctx_tree(m_cov)
should be true
is_covlmc(m_cov)
should be false
is_vlmc(m_cov)

is_ctx_tree Test if the object is a context tree

Description

This function returns TRUE for context trees and FALSE for other objects.

Usage

is_ctx_tree(x)

Arguments

x an R object.

Value

TRUE for context trees.

Examples

rdts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
rdts_ctree <- ctx_tree(rdts, min_size = 1, max_depth = 2)
is_ctx_tree(rdts_ctree)
is_ctx_tree(rdts)

60 is_merged

is_dts Test if the object is a discrete time series

Description

This function returns TRUE for discrete time series and FALSE for other objects.

Usage

is_dts(x)

Arguments

x an R object.

Value

TRUE for discrete time series.

Examples
pre_dts <- sample(c("A", "B"), 20, replace = TRUE)
x_dts <- dts(pre_dts)
is_dts(x_dts)
is_dts(pre_dts)

is_merged Merging status of a COVLMC context

Description

The function returns TRUE if the context represented by this node is merged with at least
another one and FALSE if this is not the case.

Usage

is_merged(node)

Arguments

node A ctx_node_covlmc object as returned by find_sequence() or contexts.covlmc()

Details

When a COVLMC is built on a time series with at least three distinct states, some contexts
can be merged: they use the same logistic model, leading to a more parsimonious model.
Those contexts are reported individually by functions such as contexts.covlmc(). The
present function can be used to detect such merging, while merged_with() can be used to
recover the other contexts.

is_reversed 61

Value

TRUE or FALSE, depending on the nature of the context

See Also

merged_with()

Examples
pc <- powerconsumption[powerconsumption$week == 15,]
rdts <- cut(pc$active_power, breaks = c(0, 1, 2, 3, 8))
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 5, alpha = 0.1)
ctxs <- contexts(m_cov)
no merging
sapply(ctxs, is_merged)

is_reversed Report the ordering convention of the node

Description

This function returns TRUE if the node is using a reverse temporal ordering and FALSE in
the other case.

Usage

is_reversed(node)

Arguments

node a ctx_node object as returned by find_sequence()

Value

TRUE if the node node use a reverse temporal ordering, FALSE when this is not the case

See Also

rev.ctx_node()

Examples
rdts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
rdts_ctree <- ctx_tree(rdts, min_size = 1, max_depth = 3)
is_reversed(find_sequence(rdts_ctree, c(0, 0)))
is_reversed(find_sequence(rdts_ctree, c(1, 0), reverse = TRUE))

62 logLik.covlmc

is_vlmc Test if the object is a vlmc model

Description

This function returns TRUE for VLMC models and FALSE for other objects.

Usage

is_vlmc(x)

Arguments

x an R object.

Value

TRUE for VLMC models.

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power,

breaks = c(0, quantile(pc$active_power,
probs = c(0.25, 0.5, 0.75, 1)

))
)
model <- vlmc(rdts)
should be true
is_ctx_tree(model)
should be true
is_vlmc(model)
should be false
is_covlmc(model)

logLik.covlmc Log-Likelihood of a VLMC with covariates

Description

This function evaluates the log-likelihood of a VLMC with covariates fitted on a discrete
time series.

Usage

S3 method for class 'covlmc'
logLik(object, initial = c("truncated", "specific", "extended"), ...)

logLik.vlmc 63

Arguments

object the covlmc representation.
initial specifies the likelihood function, more precisely the way the first few ob-

servations for which contexts cannot be calculated are integrated in the
likelihood. Defaults to "truncated". See loglikelihood() for details.

... additional parameters for logLik.

Value

an object of class logLik. This is a number, the log-likelihood of the (CO)VLMC with the
following attributes:

• df: the number of parameters used by the VLMC for this likelihood calculation
• nobs: the number of observations included in this likelihood calculation
• initial: the value of the initial parameter used to compute this likelihood

See Also

loglikelihood()

Examples

Likelihood for a fitted VLMC with covariates.
pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
rdts <- cut(pc$active_power, breaks = breaks, labels = labels)
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 5)
ll <- logLik(m_cov)
attributes(ll)

logLik.vlmc Log-Likelihood of a VLMC

Description

This function evaluates the log-likelihood of a VLMC fitted on a discrete time series.

64 logLik.vlmc

Usage

S3 method for class 'vlmc'
logLik(object, initial = c("truncated", "specific", "extended"), ...)

S3 method for class 'vlmc_cpp'
logLik(object, initial = c("truncated", "specific", "extended"), ...)

Arguments

object the vlmc representation.

initial specifies the likelihood function, more precisely the way the first few ob-
servations for which contexts cannot be calculated are integrated in the
likelihood. Defaults to "truncated". See loglikelihood() for details.

... additional parameters for logLik.

Value

an object of class logLik. This is a number, the log-likelihood of the (CO)VLMC with the
following attributes:

• df: the number of parameters used by the VLMC for this likelihood calculation

• nobs: the number of observations included in this likelihood calculation

• initial: the value of the initial parameter used to compute this likelihood

See Also

loglikelihood()

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
rdts <- cut(pc$active_power, breaks = breaks, labels = labels)
m_nocovariate <- vlmc(rdts)
ll <- logLik(m_nocovariate)
ll
attributes(ll)

loglikelihood 65

loglikelihood Log-Likelihood of a VLMC

Description

This function evaluates the log-likelihood of a VLMC fitted on a discrete time series. When
the optional argument newdata is provided, the function evaluates instead the log-likelihood
for this (new) discrete time series.

Usage

loglikelihood(
vlmc,
newdata,
initial = c("truncated", "specific", "extended"),
ignore,
...

)

S3 method for class 'vlmc'
loglikelihood(

vlmc,
newdata,
initial = c("truncated", "specific", "extended"),
ignore,
...

)

S3 method for class 'vlmc_cpp'
loglikelihood(

vlmc,
newdata,
initial = c("truncated", "specific", "extended"),
ignore,
...

)

Arguments

vlmc the vlmc representation.
newdata an optional object that can be interpreted as a discrete time series (for

instance a dts object).
initial specifies the likelihood function, more precisely the way the first few ob-

servations for which contexts cannot be calculated are integrated in the
likelihood. Defaults to "truncated". See below for details.

66 loglikelihood

ignore specifies the number of initial values for which the loglikelihood will not
be computed. The minimal number depends on the likelihood function
as detailed below.

... additional parameters for loglikelihood.

Details

The definition of the likelihood function depends on the value of the initial parameters,
see the section below as well as the dedicated vignette: vignette("likelihood", package
= "mixvlmc").
For VLMC objects, the method loglikelihood.vlmc will be used. For VLMC with
covariables, loglikelihood.covlmc will instead be called. For more informations on
loglikelihood methods, use methods(loglikelihood) and their associated documen-
tation.

Value

an object of class logLikMixVLMC and logLik. This is a number, the log-likelihood of the
(CO)VLMC with the following attributes:

• df: the number of parameters used by the VLMC for this likelihood calculation
• nobs: the number of observations included in this likelihood calculation
• initial: the value of the initial parameter used to compute this likelihood

likelihood calculation

In a (CO)VLMC of depth()=k, we need k past values in order to compute the context of
a given observation. As a consequence, in a time series x, the contexts of x[1] to x[k]
are unknown. Depending on the value of initial different likelihood functions are used to
tackle this difficulty:

• initial=="truncated": the likelihood is computed using only x[(k+1):length(x)]
• initial=="specific": the likelihood is computed on the full time series using a

specific context for the initial values, x[1] to x[k]. Each of the specific context is
unique, leading to a perfect likelihood of 1 (0 in log scale). Thus the numerical value
of the likelihood is identical as the one obtained with initial=="truncated" but it
is computed on length(x) with a model with more parameters than in this previous
case.

• initial=="extended" (default): the likelihood is computed on the full time series
using an extended context matching for the initial values, x[1] to x[k]. This can
be seen as a compromised between the two other possibilities: the relaxed context
matching needs in general to turn internal nodes of the context tree into actual context,
increasing the number of parameters, but not as much as with ”specific”. However,
the likelihood of say x[1] with an empty context is generally not 1 and thus the full
likelihood is smaller than the one computed with ”specific”.

In all cases, the ignore first values of the time series are not included in the computed
likelihood, but still used to compute contexts. If ignore is not specified, it is set to the

loglikelihood.covlmc 67

minimal possible value, that is k for the truncated likelihood and 0 for the other ones. If
it is specified, it must be larger or equal to k for truncated.
See the dedicated vignette for a more mathematically oriented discussion: vignette("likelihood",
package = "mixvlmc").

See Also

stats::logLik()

Examples
Likelihood for a fitted VLMC.
pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
rdts <- cut(pc$active_power, breaks = breaks, labels = labels)
m_nocovariate <- vlmc(rdts)
ll <- loglikelihood(m_nocovariate)
ll
attr(ll, "nobs")
attr(ll, "df")

Likelihood for a new time series with previously fitted VLMC.
pc_new <- powerconsumption[powerconsumption$week == 11,]
rdts_new <- cut(pc_new$active_power, breaks = breaks, labels = labels)
ll_new <- loglikelihood(m_nocovariate, newdata = rdts_new)
ll_new
attributes(ll_new)
ll_new_specific <- loglikelihood(m_nocovariate, initial = "specific", newdata = rdts_new)
ll_new_specific
attributes(ll_new_specific)
ll_new_extended <- loglikelihood(m_nocovariate, initial = "extended", newdata = rdts_new)
ll_new_extended
attributes(ll_new_extended)

loglikelihood.covlmc Log-Likelihood of a VLMC with covariates

Description

This function evaluates the log-likelihood of a VLMC with covariates fitted on a discrete
time series. When the optional arguments newdata is provided, the function evaluates
instead the log-likelihood for this (new) discrete time series on the new covariates which
must be provided through the newcov parameter.

68 loglikelihood.covlmc

Usage

S3 method for class 'covlmc'
loglikelihood(

vlmc,
newdata,
initial = c("truncated", "specific", "extended"),
ignore,
newcov,
...

)

Arguments

vlmc the covlmc representation.
newdata an optional object that can be interpreted as a discrete time series (for

instance a dts object).
initial specifies the likelihood function, more precisely the way the first few ob-

servations for which contexts cannot be calculated are integrated in the
likelihood. Defaults to "truncated". See below for details.

ignore specifies the number of initial values for which the loglikelihood will not
be computed. The minimal number depends on the likelihood function
as detailed below.

newcov an optional data frame with the new values for the covariates.
... additional parameters for loglikelihood.

Details

The definition of the likelihood function depends on the value of the initial parameters,
see the section below as well as the dedicated vignette: vignette("likelihood", package
= "mixvlmc").

Value

an object of class logLikMixVLMC and logLik. This is a number, the log-likelihood of the
(CO)VLMC with the following attributes:

• df: the number of parameters used by the VLMC for this likelihood calculation
• nobs: the number of observations included in this likelihood calculation
• initial: the value of the initial parameter used to compute this likelihood

likelihood calculation

In a (CO)VLMC of depth()=k, we need k past values in order to compute the context of
a given observation. As a consequence, in a time series x, the contexts of x[1] to x[k]
are unknown. Depending on the value of initial different likelihood functions are used to
tackle this difficulty:

• initial=="truncated": the likelihood is computed using only x[(k+1):length(x)]

loglikelihood.covlmc 69

• initial=="specific": the likelihood is computed on the full time series using a
specific context for the initial values, x[1] to x[k]. Each of the specific context is
unique, leading to a perfect likelihood of 1 (0 in log scale). Thus the numerical value
of the likelihood is identical as the one obtained with initial=="truncated" but it
is computed on length(x) with a model with more parameters than in this previous
case.

• initial=="extended" (default): the likelihood is computed on the full time series
using an extended context matching for the initial values, x[1] to x[k]. This can
be seen as a compromised between the two other possibilities: the relaxed context
matching needs in general to turn internal nodes of the context tree into actual context,
increasing the number of parameters, but not as much as with ”specific”. However,
the likelihood of say x[1] with an empty context is generally not 1 and thus the full
likelihood is smaller than the one computed with ”specific”.

In all cases, the ignore first values of the time series are not included in the computed
likelihood, but still used to compute contexts. If ignore is not specified, it is set to the
minimal possible value, that is k for the truncated likelihood and 0 for the other ones. If
it is specified, it must be larger or equal to k for truncated.
See the dedicated vignette for a more mathematically oriented discussion: vignette("likelihood",
package = "mixvlmc").

See Also

stats::logLik()

Examples

Likelihood for a fitted VLMC with covariates.
pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
rdts <- cut(pc$active_power, breaks = breaks, labels = labels)
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 5)
ll <- loglikelihood(m_cov)
ll
attr(ll, "nobs")

Likelihood for new time series and covariates with previously
fitted VLMC with covariates
pc_new <- powerconsumption[powerconsumption$week == 11,]
rdts_new <- cut(pc_new$active_power, breaks = breaks, labels = labels)
rdts_cov_new <- data.frame(day_night = (pc_new$hour >= 7 & pc_new$hour <= 17))
ll_new <- loglikelihood(m_cov, newdata = rdts_new, newcov = rdts_cov_new)
ll_new
attributes(ll_new)

70 merged_with

merged_with Merged contexts in a COVLMC

Description

The function returns NULL when the context represented by the node parameter is not
merged with another context (see is_merged()). In the other case, it returns a list of
contexts with which this one is merged.

Usage

merged_with(node)

Arguments

node A ctx_node_covlmc object as returned by find_sequence() or contexts.covlmc()

Details

If the context is merged, the function returns a list with one value for each element in the
state space (see states()). The value is NULL if the corresponding context is not merged
with the node context, while it is a ctx_node_covlmc object in the other case. A context
merged with node differs from the context represented by node only in its last value (in
temporal order) which is used as its name in the list. For instance, if the context ABC is
merged only with CBC (when represented in temporal ordering), then the resulting list is of
the form list("A" = NULL, "B" = NULL, "C"= ctx_node_covlmc(CBX)).

Value

NULL or a list of contexts merged with node represented by ctx_node_covlmc objects

See Also

is_merged()

Examples
pc_week_15_16 <- powerconsumption[powerconsumption$week %in% c(15, 16),]
elec <- pc_week_15_16$active_power
elec_rdts <- cut(elec, breaks = c(0, 0.4, 2, 8), labels = c("low", "typical", "high"))
elec_cov <- data.frame(day = (pc_week_15_16$hour >= 7 & pc_week_15_16$hour <= 18))
elec_tune <- tune_covlmc(elec_rdts, elec_cov, min_size = 5)
elec_model <- prune(as_covlmc(elec_tune), alpha = 3.961e-10)
ctxs <- contexts(elec_model)
for (ctx in ctxs) {

if (is_merged(ctx)) {
print(ctx)

metrics 71

cat("\nis merged with\n\n")
print(merged_with(ctx))

}
}

metrics Predictive quality metrics for context based models

Description

This function computes and returns predictive quality metrics for context based models
such as VLMC and VLMC with covariates.

Usage

metrics(model, ...)

Arguments

model The context based model on which to compute predictive metrics.
... Additional parameters for predictive metrics computation.

Details

A context based model computes transition probabilities for its contexts. Using a maximum
transition probability decision rule, this can be used to predict the new state that is the
more likely to follow the current one, given the context (see predict.vlmc()). The quality
of these predictions is evaluated using standard metrics including:

• accuracy
• the full confusion matrix
• the area under the roc curve (AUC), considering the context based model as a (con-

ditional) probability estimator. We use Hand and Till (2001) multiclass AUC in case
of a state space with more than 2 states

Value

The returned value is guaranteed to have at least three components

• accuracy: the accuracy of the predictions
• conf_mat: the confusion matrix of the predictions, with predicted values in rows and

true values in columns
• auc: the AUC of the predictive model

References

David J. Hand and Robert J. Till (2001). ”A Simple Generalisation of the Area Under
the ROC Curve for Multiple Class Classification Problems.” Machine Learning 45(2), p.
171–186. DOI: doi:10.1023/A:1010920819831.

https://doi.org/10.1023/A%3A1010920819831

72 metrics.covlmc

See Also

metrics.vlmc(), metrics.ctx_node(), contexts.vlmc(), predict.vlmc().

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
rdts <- cut(pc$active_power, breaks = breaks, labels = labels)
model <- vlmc(rdts)
metrics(model)

metrics.covlmc Predictive quality metrics for VLMC with covariates

Description

This function computes and returns predictive quality metrics for context based models
such as VLMC and VLMC with covariates.

Usage

S3 method for class 'covlmc'
metrics(model, ...)

S3 method for class 'metrics.covlmc'
print(x, ...)

Arguments

model The context based model on which to compute predictive metrics.
... Additional parameters for predictive metrics computation.
x A metrics.covlmc object, results of a call to metrics.covlmc()

Details

A context based model computes transition probabilities for its contexts. Using a maximum
transition probability decision rule, this can be used to predict the new state that is the
more likely to follow the current one, given the context (see predict.vlmc()). The quality
of these predictions is evaluated using standard metrics including:

• accuracy
• the full confusion matrix

metrics.covlmc 73

• the area under the roc curve (AUC), considering the context based model as a (con-
ditional) probability estimator. We use Hand and Till (2001) multiclass AUC in case
of a state space with more than 2 states

Value

An object of class metrics.covlmc with the following components:

• accuracy: the accuracy of the predictions
• conf_mat: the confusion matrix of the predictions, with predicted values in rows and

true values in columns
• auc: the AUC of the predictive model

The object has a print method that recalls basic information about the model together with
the values of the components above.

Methods (by generic)

• print(metrics.covlmc): Prints the predictive metrics of the VLMC model with
covariates.

Extended contexts

As explained in details in loglikelihood.covlmc() documentation and in the dedicated
vignette("likelihood", package = "mixvlmc"), the first initial values of a time series
do not in general have a proper context for a COVLMC with a non zero order. In or-
der to predict something meaningful for those values, we rely on the notion of extended
context defined in the documents mentioned above. This follows the same logic as using
loglikelihood.covlmc() with the parameter initial="extended". All covlmc functions
that need to manipulate initial values with no proper context use the same approach.

References

David J. Hand and Robert J. Till (2001). ”A Simple Generalisation of the Area Under
the ROC Curve for Multiple Class Classification Problems.” Machine Learning 45(2), p.
171–186. DOI: doi:10.1023/A:1010920819831.

See Also

metrics.vlmc(), metrics.ctx_node(), contexts.vlmc(), predict.vlmc().

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
rdts <- cut(pc$active_power, breaks = breaks, labels = labels)

https://doi.org/10.1023/A%3A1010920819831

74 metrics.ctx_node

rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 5)
metrics(m_cov)

metrics.ctx_node Predictive quality metrics for a node of a context tree

Description

This function computes and returns predictive quality metrics for a node (ctx_node) ex-
tracted from a context tree.

Usage

S3 method for class 'ctx_node'
metrics(model, ...)

Arguments

model T ctx_node object as returned by find_sequence().
... Additional parameters for predictive metrics computation.

Details

Compared to metrics.vlmc(), this function focuses on a single context and assesses the
quality of its predictions, disregarding observations that have other contexts. Apart from
this limited scope, the function operates as metrics.vlmc().

Value

The returned value is guaranteed to have at least three components

• accuracy: the accuracy of the predictions
• conf_mat: the confusion matrix of the predictions, with predicted values in rows and

true values in columns
• auc: the AUC of the predictive model

References

David J. Hand and Robert J. Till (2001). ”A Simple Generalisation of the Area Under
the ROC Curve for Multiple Class Classification Problems.” Machine Learning 45(2), p.
171–186. DOI: doi:10.1023/A:1010920819831.

See Also

metrics.vlmc(), metrics.ctx_node(), contexts.vlmc(), predict.vlmc().

https://doi.org/10.1023/A%3A1010920819831

metrics.ctx_node_covlmc 75

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power,

breaks = c(0, quantile(pc$active_power,
probs = c(0.25, 0.5, 0.75, 1)

))
)
model <- vlmc(rdts)
model_ctxs <- contexts(model)
metrics(model_ctxs[[4]])

metrics.ctx_node_covlmc
Predictive quality metrics for a node of a COVLMC context tree

Description

This function computes and returns predictive quality metrics for a node (ctx_node_covlmc)
extracted from a covlmc

Usage

S3 method for class 'ctx_node_covlmc'
metrics(model, ...)

Arguments

model A ctx_node_covlmc object as returned by find_sequence() or contexts.covlmc()
... Additional parameters for predictive metrics computation.

Details

Compared to metrics.covlmc(), this function focuses on a single context and assesses the
quality of its predictions, disregarding observations that have other contexts. Apart from
this limited scope, the function operates as metrics.covlmc().

Value

an object of class metrics.covlmc with the following components:

• accuracy: the accuracy of the predictions
• conf_mat: the confusion matrix of the predictions, with predicted values in rows and

true values in columns
• auc: the AUC of the predictive model

76 metrics.vlmc

References

David J. Hand and Robert J. Till (2001). ”A Simple Generalisation of the Area Under
the ROC Curve for Multiple Class Classification Problems.” Machine Learning 45(2), p.
171–186. DOI: doi:10.1023/A:1010920819831.

See Also

metrics.vlmc(), metrics.ctx_node(), contexts.vlmc(), predict.vlmc().

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
rdts <- cut(pc$active_power, breaks = breaks, labels = labels)
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 5)
m_ctxs <- contexts(m_cov)
get the predictive metrics for each context
lapply(m_ctxs, metrics)

metrics.vlmc Predictive quality metrics for VLMC

Description

This function computes and returns predictive quality metrics for context based models
such as VLMC and VLMC with covariates.

Usage

S3 method for class 'vlmc'
metrics(model, ...)

S3 method for class 'metrics.vlmc'
print(x, ...)

Arguments

model The context based model on which to compute predictive metrics.
... Additional parameters for predictive metrics computation.
x A metrics.vlmc object, results of a call to metrics.vlmc()

https://doi.org/10.1023/A%3A1010920819831

metrics.vlmc 77

Details

A context based model computes transition probabilities for its contexts. Using a maximum
transition probability decision rule, this can be used to predict the new state that is the
more likely to follow the current one, given the context (see predict.vlmc()). The quality
of these predictions is evaluated using standard metrics including:

• accuracy
• the full confusion matrix
• the area under the roc curve (AUC), considering the context based model as a (con-

ditional) probability estimator. We use Hand and Till (2001) multiclass AUC in case
of a state space with more than 2 states

Value

An object of class metrics.vlmc with the following components:

• accuracy: the accuracy of the predictions
• conf_mat: the confusion matrix of the predictions, with predicted values in rows and

true values in columns
• auc: the AUC of the predictive model

The object has a print method that recalls basic information about the model together with
the values of the components above.

Methods (by generic)

• print(metrics.vlmc): Prints the predictive metrics of the VLMC model.

Extended contexts

As explained in details in loglikelihood.vlmc() documentation and in the dedicated
vignette("likelihood", package = "mixvlmc"), the first initial values of a time series
do not in general have a proper context for a VLMC with a non zero order. In order
to predict something meaningful for those values, we rely on the notion of extended con-
text defined in the documents mentioned above. This follows the same logic as using
loglikelihood.vlmc() with the parameter initial="extended". All vlmc functions that
need to manipulate initial values with no proper context use the same approach.

References

David J. Hand and Robert J. Till (2001). ”A Simple Generalisation of the Area Under
the ROC Curve for Multiple Class Classification Problems.” Machine Learning 45(2), p.
171–186. DOI: doi:10.1023/A:1010920819831.

See Also

metrics.vlmc(), metrics.ctx_node(), contexts.vlmc(), predict.vlmc().

https://doi.org/10.1023/A%3A1010920819831

78 model

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
rdts <- cut(pc$active_power, breaks = breaks, labels = labels)
model <- vlmc(rdts)
metrics(model)

model Logistic model of a COVLMC context

Description

This function returns a representation of the logistic model associated to a COVLMC
context from its node in the associated context tree.

Usage

model(node, type = c("coef", "full"))

Arguments

node A ctx_node_covlmc object as returned by find_sequence() or contexts.covlmc()

type specifies the model information to return, either the coefficients only
(type="coef" default case) or the full model object (type="full")

Details

Full model extraction is only possible if the COVLMC model what not fully trimmed (see
trim.covlmc()). Notice that find_sequence.covlmc() can produce node that are not
context: in this case this function return NULL.

Value

if node is a context, the coefficients of the logistic model (as a vector or a matrix depending
on the size of the state space) or a logistic model as a R object. If node is not a context,
NULL.

parent 79

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 10)
vals <- states(m_cov)
node <- find_sequence(m_cov, c(vals[1], vals[1]))
node
model(node)
model(node, type = "full")

parent Find the parent of a node in a context tree

Description

This function returns the parent node of the node represented by the node parameter. The
result is NULL if node is the root node of its context tree (representing the empty sequence).

Usage

parent(node)

S3 method for class 'ctx_node'
parent(node)

S3 method for class 'ctx_node_cpp'
parent(node)

Arguments

node a ctx_node object as returned by find_sequence()

Details

Each node of a context tree represents a sequence. When find_sequence() is called with
success, the returned object represents the corresponding node in the context tree. Unless
the original sequence is empty, this node has a parent node which is returned as a ctx_node
object by the present function. Another interpretation is that the function returns the node
object associated to the sequence obtained by removing the oldest value from the original
sequence.

Value

a ctx_node object if node does correspond to the empty sequence or NULL when this is not
the case

80 plot.tune_vlmc

Examples

rdts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
rdts_ctree <- ctx_tree(rdts, min_size = 1, max_depth = 3)
ctx_00 <- find_sequence(rdts_ctree, c(0, 0))
the parent sequence/node corresponds to the 0 context
parent(ctx_00)
identical(parent(ctx_00), find_sequence(rdts_ctree, c(0)))
C++ backend
rdts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
rdts_ctree <- ctx_tree(rdts, min_size = 1, max_depth = 3, backend = "C++")
ctx_00 <- find_sequence(rdts_ctree, c(0, 0))
the parent sequence/node corresponds to the 0 context
parent(ctx_00)
identical(parent(ctx_00), find_sequence(rdts_ctree, c(0)))

plot.tune_vlmc Plot the results of automatic (CO)VLMC complexity selection

Description

This function plots the results of tune_vlmc() or tune_covlmc().

Usage

S3 method for class 'tune_vlmc'
plot(

x,
value = c("criterion", "likelihood"),
cutoff = c("quantile", "native"),
...

)

S3 method for class 'tune_covlmc'
plot(

x,
value = c("criterion", "likelihood"),
cutoff = c("quantile", "native"),
...

)

Arguments

x a tune_vlmc object
value the criterion to plot (default ”criterion”).
cutoff the scale used for the cut off criterion (default ”quantile”)
... additional parameters passed to base::plot()

plot.tune_vlmc 81

Details

The standard plot consists in showing the evolution of the criterion used to select the
model (AIC() or BIC()) as a function of the cut off criterion expressed in the quantile scale
(the quantile is used by default to offer a common default behaviour between vlmc() and
covlmc()). Parameters can be used to display instead the loglikelihood() of the model
(by setting value="likelihood") and to use the native scale for the cut off when available
(by setting cutoff="native").

Value

the tune_vlmc object invisibly

Customisation

The function sets several default before calling base::plot(), namely:

• type: ”l” by default to use a line representation;

• xlab: ”Cut off (quantile scale)” by default, adapted to the actual scale;

• ylab: the name of the criterion or ”Log likelihood”.

These parameters can be overridden by specifying other values when calling the function.
All parameters specified in addition to x, value and cutoff are passed to base::plot().

Examples

rdts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
tune_result <- tune_vlmc(rdts)
default plot
plot(tune_result)
likelihood
plot(tune_result, value = "likelihood")
parameters overriding
plot(tune_result,

value = "likelihood",
xlab = "Cut off", type = "b"

)
pc <- powerconsumption[powerconsumption$week %in% 10:12,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
rdts_best_model_tune <- tune_covlmc(rdts, rdts_cov, criterion = "AIC")
plot(rdts_best_model_tune)
plot(rdts_best_model_tune, value = "likelihood")

82 positions

positions Report the positions of a sequence associated to a node

Description

This function returns the positions of the sequence represented by node in the time series
used to build the context tree in which the sequence is represented. This is only possible
is those positions were saved during the construction of the context tree. In positions were
not saved, a call to this function produces an error.

Usage

positions(node)

S3 method for class 'ctx_node'
positions(node)

S3 method for class 'ctx_node_cpp'
positions(node)

Arguments

node a ctx_node object as returned by find_sequence()

Details

A position of a sequence ctx in the time series x is an index value t such that the sequence
ends with x[t]. Thus x[t+1] is after the context. For instance if x=c(0, 0, 1, 1) and
ctx=c(0, 1) (in standard state order), then the position of ctx in x is 3.

Value

positions of the sequence represented by node is the original time series as a integer vector

Examples

rdts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
rdts_tree <- ctx_tree(rdts, max_depth = 3, min_size = 5)
subseq <- find_sequence(rdts_tree, factor(c("B", "A"), levels = c("A", "B", "C")))
if (!is.null(subseq)) {

positions(subseq)
}

powerconsumption 83

powerconsumption Individual household electric power consumption

Description

A data set containing measurements of the electric power consumption of one household
with a time resolution of 10 minutes for the full year of 2008.

Usage

powerconsumption

Format

A data frame with 52704 rows and 15 variables:

month month of 2008

month_day day of the month

hour hour (0 to 23)

minute starting minute of the 10 minutes period of this row

active_power global average active power on the 10 minute period (in kilowatt)

reactive_power global average reactive power on the 10 minute period (in kilowatt)

voltage Average voltage on the 10 minute period (in volt)

intensity global average current intensity on the 10 minute period (in ampere)

sub_metering_1 energy sub-metering No. 1 (in watt-hour of active energy averaged over
the 10 minute period). It corresponds to the kitchen, containing mainly a dishwasher,
an oven and a microwave (hot plates are not electric but gas powered)

sub_metering_2 energy sub-metering No. 2 (in watt-hour of active energy averaged
over the 10 minute period). It corresponds to the laundry room, containing a washing-
machine, a tumble-drier, a refrigerator and a light.

sub_metering_3 energy sub-metering No. 3 (in watt-hour of active energy averaged
over the 10 minute period). It corresponds to an electric water-heater and an air-
conditioner.

week week number

week_day day of the week from 1 = Sunday to 7 = Saturday

year_day day of the year from 1 to 366 (2008 is a leap year)

date_time Date and time in POSIXct format

84 predict.covlmc

Details

This is a simplified version of the full data available on the UCI Machine Learning Repos-
itory under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, and
provided by Georges Hebrail and Alice Berard.
The original data have been averaged over a 10 minute time period (discarding missing
data in each period). The data set contains only the measurements from year 2008.
Notice that the different variables are expressed in the adapted units. In particular, the
sub-meters are measuring active energy (in watt-hour) while the global active power is
expressed in kilowatt.

Source

Individual household electric power consumption, 2012, G. Hebrail and A. Berard, UC
Irvine Machine Learning repository. doi:10.24432/C58K54

predict.covlmc Next state prediction in a discrete time series for a VLMC with
covariates

Description

This function computes one step ahead predictions for a discrete time series based on a
VLMC with covariates.

Usage

S3 method for class 'covlmc'
predict(

object,
newdata,
newcov,
type = c("raw", "probs"),
final_pred = TRUE,
...

)

Arguments

object a fitted covlmc object.
newdata a time series adapted to the covlmc object.
newcov a data frame with the new values for the covariates.
type character indicating the type of prediction required. The default "raw"

returns actual predictions in the form of a new time series. The alternative
"probs" returns a matrix of prediction probabilities (see details).

https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.24432/C58K54

predict.vlmc 85

final_pred if TRUE (default value), the predictions include a final prediction step,
made by computing the context of the full time series. When FALSE this
final prediction is not included.

... additional arguments.

Details

Given a time series X, at time step t, a context is computed using observations from X[1]
to X[t-1] (see the dedicated section). The prediction is then the most probable state for
X[t] given this logistic model of the context and the corresponding values of the covariates.
The time series of predictions is returned by the function when type="raw" (default case).
When type="probs", the function returns of the probabilities of each state for X[t] as es-
timated by the logistic models. Those probabilities are returned as a matrix of probabilities
with column names given by the state names.

Value

A vector of predictions if type="raw" or a matrix of state probabilities if type="probs".

Extended contexts

As explained in details in loglikelihood.covlmc() documentation and in the dedicated
vignette("likelihood", package = "mixvlmc"), the first initial values of a time series
do not in general have a proper context for a COVLMC with a non zero order. In or-
der to predict something meaningful for those values, we rely on the notion of extended
context defined in the documents mentioned above. This follows the same logic as using
loglikelihood.covlmc() with the parameter initial="extended". All covlmc functions
that need to manipulate initial values with no proper context use the same approach.

Examples

pc <- powerconsumption[powerconsumption$week == 10,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.2, 0.7, 1))))
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 5, alpha = 0.5)
rdts_probs <- predict(m_cov, rdts[1:144], rdts_cov[1:144, , drop = FALSE], type = "probs")
rdts_preds <- predict(m_cov, rdts[1:144], rdts_cov[1:144, , drop = FALSE],

type = "raw", final_pred = FALSE
)

predict.vlmc Next state prediction in a discrete time series for a VLMC

Description

This function computes one step ahead predictions for a discrete time series based on a
VLMC.

86 predict.vlmc

Usage

S3 method for class 'vlmc'
predict(object, newdata, type = c("raw", "probs"), final_pred = TRUE, ...)

S3 method for class 'vlmc_cpp'
predict(object, newdata, type = c("raw", "probs"), final_pred = TRUE, ...)

Arguments

object a fitted vlmc object.

newdata a time series adapted to the vlmc object.

type character indicating the type of prediction required. The default "raw"
returns actual predictions in the form of a new time series. The alternative
"probs" returns a matrix of prediction probabilities (see details).

final_pred if TRUE (default value), the predictions include a final prediction step,
made by computing the context of the full time series. When FALSE this
final prediction is not included.

... additional arguments.

Details

Given a time series X, at time step t, a context is computed using observations from X[1]
to X[t-1] (see the dedicated section). The prediction is then the most probable state for
X[t] given this contexts. Ties are broken according to the natural order in the state space,
favouring ”small” values. The time series of predictions is returned by the function when
type="raw" (default case).

When type="probs", each X[t] is associated to the conditional probabilities of the next
state given the context. Those probabilities are returned as a matrix of probabilities with
column names given by the state names.

Value

A vector of predictions if type="raw" or a matrix of state probabilities if type="probs".

Extended contexts

As explained in details in loglikelihood.vlmc() documentation and in the dedicated
vignette("likelihood", package = "mixvlmc"), the first initial values of a time series
do not in general have a proper context for a VLMC with a non zero order. In order
to predict something meaningful for those values, we rely on the notion of extended con-
text defined in the documents mentioned above. This follows the same logic as using
loglikelihood.vlmc() with the parameter initial="extended". All vlmc functions that
need to manipulate initial values with no proper context use the same approach.

print.contexts 87

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power,

breaks = c(0, quantile(pc$active_power,
probs = c(0.25, 0.5, 0.75, 1)

))
)
model <- vlmc(rdts, min_size = 5)
predict(model, rdts[1:5])
predict(model, rdts[1:5], "probs")
C++ backend
pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power,

breaks = c(0, quantile(pc$active_power,
probs = c(0.25, 0.5, 0.75, 1)

))
)
model <- vlmc(rdts, min_size = 5, backend = "C++")
predict(model, rdts[1:5])
predict(model, rdts[1:5], "probs")

print.contexts Print a context list

Description

This function prints a list of contexts i.e. a contexts object listing ctx_node objects.

Usage

S3 method for class 'contexts'
print(x, reverse = TRUE, ...)

Arguments

x the contexts object to print
reverse specifies whether the contexts should be reported in temporal order (FALSE,

default value) or in reverse temporal order (TRUE). If the parameter is
not specified, the contexts are displayed in order specified by the call to
contexts() used to build the context list.

... additional arguments for the print function.

Value

the x object, invisibly

See Also

contexts()

88 prune

Examples
rdts <- c("A", "B", "C", "A", "A", "B", "B", "C", "C", "A")
rdts_tree <- ctx_tree(rdts, max_depth = 3)
print(contexts(rdts_tree))

print.dts Print a discrete time series

Description

This function prints a discrete time series.

Usage

S3 method for class 'dts'
print(x, n = 5, ...)

Arguments

x the dts object to print
n the number of time steps of time series to print (defaults to 5)
... additional arguments for the print function.

Value

the x object, invisibly

Examples
x_dts <- dts(sample(c("A", "B"), 20, replace = TRUE))
print(x_dts, n = 10)

prune Prune a Variable Length Markov Chain (VLMC)

Description

This function prunes a VLMC.

Usage

prune(vlmc, alpha = 0.05, cutoff = NULL, ...)

S3 method for class 'vlmc'
prune(vlmc, alpha = 0.05, cutoff = NULL, ...)

S3 method for class 'vlmc_cpp'
prune(vlmc, alpha = 0.05, cutoff = NULL, ...)

prune 89

Arguments

vlmc a fitted VLMC model.

alpha number in (0,1] (default: 0.05) cut off value in quantile scale for pruning.

cutoff positive number: cut off value in native (log likelihood ratio) scale for
pruning. Defaults to the value obtained from alpha. Takes precedence
over alpha if specified.

... additional arguments for the prune function.

Details

In general, pruning a VLMC is more efficient than constructing two VLMC (the base one
and pruned one). Up to numerical instabilities, building a VLMC with a a cut off and
then pruning it with a b cut off (with a>b) should produce the same VLMC than building
directly the VLMC with a b cut off. Interesting cut off values can be extracted from a
VLMC using the cutoff() function.

As automated model selection is provided by tune_vlmc(), the direct use of cutoff should
be reserved to advanced exploration of the set of trees that can be obtained from a complex
one, e.g. to implement model selection techniques that are not provided by tune_vlmc().

Value

a pruned VLMC

See Also

cutoff() and tune_vlmc()

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power,

breaks = c(0, quantile(pc$active_power,
probs = c(0.25, 0.5, 0.75, 1)

))
)
base_model <- vlmc(rdts, alpha = 0.1)
model_cuts <- cutoff(base_model)
pruned_model <- prune(base_model, model_cuts[3])
draw(pruned_model)
direct_simple <- vlmc(rdts, alpha = model_cuts[3])
draw(direct_simple)
pruned_model and direct_simple should be identical
all.equal(pruned_model, direct_simple)

90 prune.covlmc

prune.covlmc Prune a Variable Length Markov Chain with covariates

Description

This function prunes a vlmc with covariates. This model must have been estimated with
keep_data=TRUE to enable the pruning.

Usage

S3 method for class 'covlmc'
prune(vlmc, alpha = 0.05, cutoff = NULL, ...)

Arguments

vlmc a fitted VLMC model with covariates.
alpha number in (0,1) (default: 0.05) cutoff value in quantile scale for pruning.
cutoff not supported by the vlmc with covariates.
... additional arguments for the prune function.

Details

Post pruning a VLMC with covariates is not as straightforward as the same procedure ap-
plied to vlmc() (see cutoff.vlmc() and prune.vlmc()). For efficiency reasons, covlmc()
estimates only the logistic models that are considered useful for a given set construction
parameters. With a more aggressive pruning threshold, some contexts become leaves of the
context tree and new logistic models must be estimated. Thus the pruning opportunities
given by cutoff.covlmc() are only a subset of interesting cut offs for a given covlmc.
Nevertheless, covlmc share with vlmc() the principle that post pruning a covlmc should
give the same model as buidling directly the covlmc, provided that the post pruning alpha
is smaller than the alpha used to build the initial model.

Value

a pruned covlmc.

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 5, keep_data = TRUE)
draw(m_cov)
m_cov_cuts <- cutoff(m_cov)
p_cov <- prune(m_cov, m_cov_cuts[1])
draw(p_cov)

rev.ctx_node 91

rev.ctx_node Reverse Sequence

Description

This function reverses the order in which the sequence represented by the ctx_node pa-
rameter will be reported in other functions, mainly as_sequence().

Usage

S3 method for class 'ctx_node'
rev(x)

Arguments

x a ctx_node object as returned by find_sequence()

Value

a ctx_node using the opposite ordering convention as the parameter of the function

See Also

is_reversed()

Examples
rdts <- c("A", "B", "C", "A", "A", "B", "B", "C", "C", "A")
rdts_tree <- ctx_tree(rdts, max_depth = 3)
res <- find_sequence(rdts_tree, c("A", "B"))
print(res)
r_res <- rev(res)
print(r_res)
as_sequence(r_res)

simulate.covlmc Simulate a discrete time series for a covlmc

Description

This function simulates a time series from the distribution estimated by the given covlmc
object.

Usage

S3 method for class 'covlmc'
simulate(object, nsim = 1, seed = NULL, covariate, init = NULL, ...)

92 simulate.covlmc

Arguments

object a fitted covlmc object.
nsim length of the simulated time series (defaults to 1).
seed an optional random seed (see the dedicated section).
covariate values of the covariates.
init an optional initial sequence for the time series given by an object that

can be interpreted as a discrete time series.
... additional arguments.

Details

A VLMC with covariates model needs covariates to compute its transition probabilities. The
covariates must be submitted as a data frame using the covariate argument. In addition,
the time series can be initiated by a fixed sequence specified via the init parameter.

Value

a simulated discrete time series of the same type as the one used to build the covlmc with
a seed attribute (see the Random seed section). The results has also the dts_simulated
class to hide the seed attribute when using print or similar function.

Extended contexts

As explained in details in loglikelihood.covlmc() documentation and in the dedicated
vignette("likelihood", package = "mixvlmc"), the first initial values of a time series
do not in general have a proper context for a COVLMC with a non zero order. In or-
der to simulate something meaningful for those values, we rely on the notion of extended
context defined in the documents mentioned above. This follows the same logic as using
loglikelihood.covlmc() with the parameter initial="extended". All covlmc functions
that need to manipulate initial values with no proper context use the same approach.

Random seed

This function reproduce the behaviour of stats::simulate(). If seed is NULL the function
does not change the random generator state and returns the value of .Random.seed as a
seed attribute in the return value. This can be used to reproduce exactly the simulation
results by setting .Random.seed to this value. Notice that if the random seed has not be
initialised by R so far, the function issues a call to runif(1) to perform this initialisation
(as is done in stats::simulate()).
It seed is an integer, it is used in a call to set.seed() before the simulation takes place.
The integer is saved as a seed attribute in the return value. The integer seed is completed
by an attribute kind which contains the value as.list([RNGkind()]) exactly as with
stats::simulate(). The random generator state is reset to its original value at the end
of the call.

See Also

stats::simulate() for details and examples on the random number generator setting

simulate.vlmc 93

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 5)
new week with day light from 6:00 to 18:00
new_cov <- data.frame(day_night = rep(c(rep(FALSE, 59), rep(TRUE, 121), rep(FALSE, 60)), times = 7))
new_rdts <- simulate(m_cov, nrow(new_cov), seed = 0, covariate = new_cov)
new_rdts_2 <- simulate(m_cov, nrow(new_cov), seed = 0, covariate = new_cov, init = rdts[1:10])

simulate.vlmc Simulate a discrete time series for a vlmc

Description

This function simulates a time series from the distribution estimated by the given vlmc
object.

Usage

S3 method for class 'vlmc'
simulate(object, nsim = 1L, seed = NULL, init = NULL, burnin = 0L, ...)

Arguments

object a fitted vlmc object.
nsim length of the simulated time series (defaults to 1).
seed an optional random seed (see the dedicated section).
init an optional initial sequence for the time series given by an object that

can be interpreted as a discrete time series.
burnin number of initial observations to discard or "auto" (see the dedicated

section).
... additional arguments.

Details

The time series can be initiated by a fixed sequence specified via the init parameter.

Value

a simulated discrete time series of the same type as the one used to build the vlmc with
a seed attribute (see the Random seed section). The results has also the dts_simulated
class to hide the seed attribute when using print or similar function.

94 simulate.vlmc

Burn in (Warm up) period

When using a VLMC for simulation purposes, we are generally interested in the stationary
distribution of the corresponding Markov chain. To reduce the dependence of the samples
from the initial values and get closer to this stationary distribution (if it exists), it is
recommended to discard the first samples which are produced in a so-called ”burn in” (or
”warm up”) period. The burnin parameter can be used to implement this approach. The
VLMC is used to produce a sample of size burnin + nsim but the first burnin values are
discarded. Notice that this burn in values can be partially given by the init parameter if
it is specified.

If burnin is set to "auto", the burnin period is set to 64 * context_number(object),
following the heuristic proposed in Mächler and Bühlmann (2004).

Random seed

This function reproduce the behaviour of stats::simulate(). If seed is NULL the function
does not change the random generator state and returns the value of .Random.seed as a
seed attribute in the return value. This can be used to reproduce exactly the simulation
results by setting .Random.seed to this value. Notice that if the random seed has not be
initialised by R so far, the function issues a call to runif(1) to perform this initialisation
(as is done in stats::simulate()).

It seed is an integer, it is used in a call to set.seed() before the simulation takes place.
The integer is saved as a seed attribute in the return value. The integer seed is completed
by an attribute kind which contains the value as.list([RNGkind()]) exactly as with
stats::simulate(). The random generator state is reset to its original value at the end
of the call.

Extended contexts

As explained in details in loglikelihood.vlmc() documentation and in the dedicated
vignette("likelihood", package = "mixvlmc"), the first initial values of a time series
do not in general have a proper context for a VLMC with a non zero order. In order to
simulate something meaningful for those values when init is not provided, we rely on the
notion of extended context defined in the documents mentioned above. This follows the
same logic as using loglikelihood.vlmc() with the parameter initial="extended". All
vlmc functions that need to manipulate initial values with no proper context use the same
approach.

References

Mächler, M. and Bühlmann, P. (2004) ”Variable Length Markov Chains: Methodology,
Computing, and Software” Journal of Computational and Graphical Statistics, 13 (2), 435-
455, doi:10.1198/1061860043524

See Also

stats::simulate() for details and examples on the random number generator setting

https://doi.org/10.1198/1061860043524

simulate.vlmc_cpp 95

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power,

breaks = c(0, quantile(pc$active_power,
probs = c(0.25, 0.5, 0.75, 1)

))
)
model <- vlmc(rdts, min_size = 5)
new_rdts <- simulate(model, 500, seed = 0)
new_rdts_2 <- simulate(model, 500, seed = 0, init = rdts[1:5])
new_rdts_3 <- simulate(model, 500, seed = 0, burnin = 500)

simulate.vlmc_cpp Simulate a discrete time series for a vlmc

Description

This function simulates a time series from the distribution estimated by the given vlmc
object.

Usage

S3 method for class 'vlmc_cpp'
simulate(

object,
nsim = 1,
seed = NULL,
init = NULL,
burnin = 0L,
sample = c("fast", "slow", "R"),
...

)

Arguments

object a fitted vlmc object.
nsim length of the simulated time series (defaults to 1).
seed an optional random seed (see the dedicated section).
init an optional initial sequence for the time series given by an object that

can be interpreted as a discrete time series.
burnin number of initial observations to discard or "auto" (see the dedicated

section).
sample specifies which implementation of base::sample() to use. See the dedi-

cated section.
... additional arguments.

96 simulate.vlmc_cpp

Details

The time series can be initiated by a fixed sequence specified via the init parameter.

Value

a simulated discrete time series of the same type as the one used to build the vlmc with
a seed attribute (see the Random seed section). The results has also the dts_simulated
class to hide the seed attribute when using print or similar function.

sampling method

The R backend for vlmc() uses base::sample() to generate samples for each context.
Internally, this function sorts the probabilities of each state in decreasing probability order
(among other things), which is not needed in our case. The C++ backend can be used with
three different implementations:

• sample="fast" uses a dedicated C++ implementation adapted to the data structures
used internally. In general, the simulated time series obtained with this implementation
will be different from the one generated with the R backend, even using the same seed.

• sample="slow" uses another C++ implementation that mimics base::sample() in
order to maximize the chance to provide identical simulation results regardless of the
backend (when using the same random seed). This process is not perfect as we use
the std::lib sort algorithm which is not guaranteed to give identical results as the ones
of R internal ’revsort’.

• sample="R" uses direct calls to base::sample(). Results are guaranteed to be iden-
tical between the two backends, but at the price of higher running time.

Burn in (Warm up) period

When using a VLMC for simulation purposes, we are generally interested in the stationary
distribution of the corresponding Markov chain. To reduce the dependence of the samples
from the initial values and get closer to this stationary distribution (if it exists), it is
recommended to discard the first samples which are produced in a so-called ”burn in” (or
”warm up”) period. The burnin parameter can be used to implement this approach. The
VLMC is used to produce a sample of size burnin + nsim but the first burnin values are
discarded. Notice that this burn in values can be partially given by the init parameter if
it is specified.
If burnin is set to "auto", the burnin period is set to 64 * context_number(object),
following the heuristic proposed in Mächler and Bühlmann (2004).

Random seed

This function reproduce the behaviour of stats::simulate(). If seed is NULL the function
does not change the random generator state and returns the value of .Random.seed as a
seed attribute in the return value. This can be used to reproduce exactly the simulation
results by setting .Random.seed to this value. Notice that if the random seed has not be
initialised by R so far, the function issues a call to runif(1) to perform this initialisation
(as is done in stats::simulate()).

states 97

It seed is an integer, it is used in a call to set.seed() before the simulation takes place.
The integer is saved as a seed attribute in the return value. The integer seed is completed
by an attribute kind which contains the value as.list([RNGkind()]) exactly as with
stats::simulate(). The random generator state is reset to its original value at the end
of the call.

Extended contexts

As explained in details in loglikelihood.vlmc() documentation and in the dedicated
vignette("likelihood", package = "mixvlmc"), the first initial values of a time series
do not in general have a proper context for a VLMC with a non zero order. In order to
simulate something meaningful for those values when init is not provided, we rely on the
notion of extended context defined in the documents mentioned above. This follows the
same logic as using loglikelihood.vlmc() with the parameter initial="extended". All
vlmc functions that need to manipulate initial values with no proper context use the same
approach.

References

Mächler, M. and Bühlmann, P. (2004) ”Variable Length Markov Chains: Methodology,
Computing, and Software” Journal of Computational and Graphical Statistics, 13 (2), 435-
455, doi:10.1198/1061860043524

See Also

stats::simulate() for details and examples on the random number generator setting

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power,

breaks = c(0, quantile(pc$active_power,
probs = c(0.25, 0.5, 0.75, 1)

))
)
model <- vlmc(rdts, min_size = 5)
new_rdts <- simulate(model, 500, seed = 0)
new_rdts_2 <- simulate(model, 500, seed = 0, init = rdts[1:5])
new_rdts_3 <- simulate(model, 500, seed = 0, burnin = 500)

states State space of an object

Description

This function returns the state space of an object for which this is meaningful such as a
discrete time series or a context tree.

https://doi.org/10.1198/1061860043524

98 trim

Usage

states(x)

S3 method for class 'ctx_tree'
states(x)

S3 method for class 'dts'
states(x)

Arguments

x an object with a state space.

Value

the state space of the context tree.

Examples

rdts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
rdts_ctree <- ctx_tree(rdts, min_size = 1, max_depth = 2)
should be c(0, 1)
states(rdts_ctree)
x_dts <- dts(sample(c("A", "B", "C"), 20, replace = TRUE))
should be c("A", "B", "C")
states(x_dts)

trim Trim a context tree

Description

This function returns a trimmed context tree from which match positions have been re-
moved.

Usage

trim(ct, ...)

Arguments

ct a context tree.
... additional arguments for the trim function.

Value

a trimmed context tree.

trim.covlmc 99

Examples

context tree trimming
rdts <- sample(as.factor(c("A", "B", "C")), 1000, replace = TRUE)
rdts_tree <- ctx_tree(rdts, max_depth = 10, min_size = 5, keep_position = TRUE)
print(object.size(rdts_tree))
rdts_tree <- trim(rdts_tree)
print(object.size(rdts_tree))

trim.covlmc Trim a COVLMC

Description

This function returns a trimmed COVLMC from which cached data have been removed.

Usage

S3 method for class 'covlmc'
trim(ct, keep_model = FALSE, ...)

Arguments

ct a context tree.
keep_model specifies whether to keep the internal models (or not)
... additional arguments for the trim function.

Details

Called with keep_model set to FALSE (default case), the trimming is maximal and reduces
further usability of the model. In particular loglikelihood.covlmc() cannot be used for
new data, contexts.covlmc() do not support model extraction, and simulate.covlmc(),
metrics.covlmc() and prune.covlmc() cannot be used at all.
Called with keep_model set to TRUE, the trimming process is less complete. In particular
internal models are simplified using butcher::butcher() and some additional minor re-
ductions. This saves less memory but enables the use of loglikelihood.covlmc() for new
data as well as the use of simulate.covlmc().

Value

a trimmed context tree.

See Also

tune_covlmc()

100 trim.vlmc

Examples
pc <- powerconsumption[powerconsumption$week %in% 5:7,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(rdts, rdts_cov, min_size = 10, keep_data = TRUE)
print(object.size(m_cov), units = "Mb")
t_m_cov_model <- trim(m_cov, keep_model = TRUE)
print(object.size(t_m_cov_model), units = "Mb")
t_m_cov <- trim(m_cov)
print(object.size(t_m_cov), units = "Mb")

trim.vlmc This function returns a trimmed VLMC from which match posi-
tions have been removed.

Description

This function returns a trimmed context tree from which match positions have been re-
moved.

Usage

S3 method for class 'vlmc'
trim(ct, ...)

Arguments

ct a VLMC.
... additional arguments for the trim function.

Value

a trimmed VLMC

Examples
VLMC trimming is generally useless unless match positions were kept
pc <- powerconsumption[powerconsumption$week %in% 5:6,]
rdts <- cut(pc$active_power, breaks = 4)
model <- vlmc(rdts, keep_match = TRUE)
print(object.size(model))
model <- trim(model)
memory use should be reduced
print(object.size(model))
nm_model <- vlmc(rdts)
print(object.size(nm_model))
nm_model <- trim(nm_model)
no effect when match positions are not kept
print(object.size(nm_model))

trim.vlmc_cpp 101

trim.vlmc_cpp This function returns a trimmed VLMC from which match posi-
tions have been removed.

Description

This function returns a trimmed context tree from which match positions have been re-
moved.

Usage

S3 method for class 'vlmc_cpp'
trim(ct, ...)

Arguments

ct a VLMC.
... additional arguments for the trim function.

Details

Trimming in the C++ backend is done directly in the Rcpp managed memory and cannot
be detected at R level using e.g. utils::object.size().

Value

a trimmed VLMC

Examples

VLMC trimming is generally useless unless match positions were kept
pc <- powerconsumption[powerconsumption$week %in% 5:6,]
rdts <- cut(pc$active_power, breaks = 4)
model <- vlmc(rdts, backend = "C++", keep_match = TRUE)
model <- trim(model)

tune_covlmc Fit an optimal Variable Length Markov Chain with Covariates
(coVLMC)

Description

This function fits a Variable Length Markov Chain with Covariates (coVLMC) to a discrete
time series coupled with a time series of covariates by optimizing an information criterion
(BIC or AIC).

102 tune_covlmc

Usage

tune_covlmc(
x,
covariate,
criterion = c("BIC", "AIC"),
initial = c("truncated", "specific", "extended"),
alpha_init = NULL,
min_size = 5,
max_depth = 100,
verbose = 0,
save = c("best", "initial", "all"),
trimming = c("full", "partial", "none"),
best_trimming = c("none", "partial", "full")

)

Arguments

x an object that can be interpreted as a discrete time series, such as an
integer vector or a dts object (see dts()).

covariate a data frame of covariates.

criterion criterion used to select the best model. Either "BIC" (default) or "AIC"
(see details).

initial specifies the likelihood function, more precisely the way the first few ob-
servations for which contexts cannot be calculated are integrated in the
likelihood. See loglikelihood() for details.

alpha_init if non NULL used as the initial cut off parameter (in quantile scale) to
build the initial VLMC

min_size integer >= 1 (default: 5). Tune the minimum number of observations
for a context in the growing phase of the context tree (see covlmc() for
details).

max_depth integer >= 1 (default: 100). Longest context considered in growing phase
of the initial context tree (see details).

verbose integer >= 0 (default: 0). Verbosity level of the pruning process.

save specify which BIC models are saved during the pruning process. The de-
fault value "best" asks the function to keep only the best model according
to the criterion. When save="initial" the function keeps in addition
the initial (complex) model which is then pruned during the selection pro-
cess. When save="all", the function returns all the models considered
during the selection process. See details for memory occupation.

trimming specify the type of trimming used when saving the intermediate models,
see details.

best_trimming specify the type of trimming used when saving the best model and the
initial one (see details).

tune_covlmc 103

Details

This function automates the process of fitting a large coVLMC to a discrete time series with
covlmc() and of pruning the tree (with cutoff() and prune()) to get an optimal with
respect to an information criterion. To avoid missing long term dependencies, the function
uses the max_depth parameter as an initial guess but then relies on an automatic increase
of the value to make sure the initial context tree is only limited by the min_size parameter.
The initial value of the alpha parameter of covlmc() is also set to a conservative value
(0.5) to avoid prior simplification of the context tree. This can be overridden by setting the
alpha_init parameter to a more adapted value.

Once the initial coVLMC is obtained, the cutoff() and prune() functions are used to
build all the coVLMC models that could be generated using smaller values of the alpha
parameter. The best model is selected from this collection, including the initial complex
tree, as the one that minimizes the chosen information criterion.

Value

a list with the following components:

• best_model: the optimal COVLMC

• criterion: the criterion used to select the optimal VLMC

• initial: the likelihood function used to select the optimal VLMC

• results: a data frame with details about the pruning process

• saved_models: a list of intermediate COVLMCs if save="initial" or save="all".
It contains an initial component with the large coVLMC obtained first and an all
component with a list of all the other coVLMC obtained by pruning the initial one.

Memory occupation

covlmc objects tend to be large and saving all the models during the search for the op-
timal model can lead to an unreasonable use of memory. To avoid this problem, mod-
els are kept in trimmed form only using trim.covlmc() with keep_model=FALSE. Both
the initial model and the best one are saved untrimmed. This default behaviour cor-
responds to trimming="full". Setting trimming="partial" asks the function to use
keep_model=TRUE in trim.covlmc() for intermediate models. Finally, trimming="none"
turns off trimming, which is discouraged expected for small data sets.

In parallel processing contexts (e.g. using foreach::%dopar%), the memory occupation of
the results can become very large as models tend to keep environments attached to the
formulas. In this situation, it is highly recommended to trim all saved models, including
the best one and the initial one. This can be done via the best_trimming parameter whose
possible values are identical to the ones of trimming.

See Also

covlmc(), cutoff() and prune()

104 tune_vlmc

Examples
pc <- powerconsumption[powerconsumption$week %in% 6:7,]
rdts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
rdts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
rdts_best_model_tune <- tune_covlmc(rdts, rdts_cov)
draw(as_covlmc(rdts_best_model_tune))

tune_vlmc Fit an optimal Variable Length Markov Chain (VLMC)

Description

This function fits a Variable Length Markov Chain (VLMC) to a discrete time series by
optimizing an information criterion (BIC or AIC).

Usage

tune_vlmc(
x,
criterion = c("BIC", "AIC"),
initial = c("truncated", "specific", "extended"),
alpha_init = NULL,
cutoff_init = NULL,
min_size = 2L,
max_depth = 100L,
backend = getOption("mixvlmc.backend", "R"),
verbose = 0,
save = c("best", "initial", "all")

)

Arguments

x an object that can be interpreted as a discrete time series, such as an
integer vector or a dts object (see dts()).

criterion criterion used to select the best model. Either "BIC" (default) or "AIC"
(see details).

initial specifies the likelihood function, more precisely the way the first few ob-
servations for which contexts cannot be calculated are integrated in the
likelihood. Default to "truncated". See loglikelihood() for details.

alpha_init if non NULL used as the initial cut off parameter (in quantile scale) to
build the initial VLMC

cutoff_init if non NULL used as the initial cut off parameter to build the initial VLMC.
Takes precedence over alpha_init if specified.

min_size integer >= 1 (default: 2). Minimum number of observations for a context
in the growing phase of the initial context tree.

tune_vlmc 105

max_depth integer >= 1 (default: 100). Longest context considered in growing phase
of the initial context tree (see details).

backend backend ”R” or ”C++” (default: as specified by the ”mixvlmc.backend”
option). Specifies the implementation used to represent the context tree
and to built it. See vlmc() for details.

verbose integer >= 0 (default: 0). Verbosity level of the pruning process.
save specify which BIC models are saved during the pruning process. The

default value "best" asks the function to keep only the best model ac-
cording to the criterion. When save="initial" the function keeps in
addition the initial (complex) model which is then pruned during the se-
lection process. When save="all", the function returns all the models
considered during the selection process.

Details

This function automates the process of fitting a large VLMC to a discrete time series with
vlmc() and of pruning the tree (with cutoff() and prune()) to get an optimal with respect
to an information criterion. To avoid missing long term dependencies, the function uses
the max_depth parameter as an initial guess but then relies on an automatic increase of the
value to make sure the initial context tree is only limited by the min_size parameter. The
initial value of the cutoff parameter of vlmc() is also set to conservative values (depending
on the criterion) to avoid prior simplification of the context tree. This default value can be
overridden using the cutoff_init or alpha_init parameter.
Once the initial VLMC is obtained, the cutoff() and prune() functions are used to build
all the VLMC models that could be generated using larger values of the initial cut off
parameter. The best model is selected from this collection, including the initial complex
tree, as the one that minimizes the chosen information criterion.

Value

a list with the following components:

• best_model: the optimal VLMC
• criterion: the criterion used to select the optimal VLMC
• initial: the likelihood function used to select the optimal VLMC
• results: a data frame with details about the pruning process
• saved_models: a list of intermediate VLMCs if save="initial" or save="all". It

contains an initial component with the large VLMC obtained first and an all com-
ponent with a list of all the other VLMC obtained by pruning the initial one.

See Also

vlmc(), cutoff() and prune()

Examples
rdts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
tune_result <- tune_vlmc(rdts)
draw(tune_result$best_model)

106 vlmc

vlmc Fit a Variable Length Markov Chain (VLMC)

Description

This function fits a Variable Length Markov Chain (VLMC) to a discrete time series.

Usage

vlmc(
x,
alpha = 0.05,
cutoff = NULL,
min_size = 2L,
max_depth = 100L,
prune = TRUE,
keep_match = FALSE,
backend = getOption("mixvlmc.backend", "R")

)

Arguments

x an object that can be interpreted as a discrete time series, such as an
integer vector or a dts object (see dts())

alpha number in (0,1] (default: 0.05) cut off value in quantile scale in the pruning
phase.

cutoff non negative number: cut off value in native (likelihood ratio) scale in
the pruning phase. Defaults to the value obtained from alpha. Takes
precedence over alpha is specified.

min_size integer >= 1 (default: 2). Minimum number of observations for a context
in the growing phase of the context tree.

max_depth integer >= 1 (default: 100). Longest context considered in growing phase
of the context tree.

prune logical: specify whether the context tree should be pruned (default be-
haviour).

keep_match logical: specify whether to keep the context matches (default to FALSE)
backend ”R” or ”C++” (default: as specified by the ”mixvlmc.backend” option).

Specifies the implementation used to represent the context tree and to
built it. See details.

Details

The VLMC is built using Bühlmann and Wyner’s algorithm which consists in fitting a
context tree (see ctx_tree()) to a time series and then pruning it in such as way that the

vlmc 107

conditional distribution of the next state of the time series given the context is significantly
different from the distribution given a truncated version of the context.
The construction of the context tree is controlled by min_size and max_depth, exactly as
in ctx_tree(). Significativity is measured using a likelihood ratio test (threshold can be
specified in terms of the ratio itself with cutoff) or in quantile scale with alpha.
Pruning can be postponed by setting prune=FALSE. Using a combination of cutoff() and
prune(), the complexity of the VLMC can then be adjusted. Any VLMC model can
be pruned after construction, prune=FALSE is a convenience parameter to avoid setting
alpha=1 (which essentially prevents any pruning). Automated model selection is provided
by tune_vlmc().

Value

a fitted vlmc model.

Back ends

Two back ends are available to compute context trees:

• the ”R” back end represents the tree in pure R data structures (nested lists) that be
easily processed further in pure R (C++ helper functions are used to speed up the
construction).

• the ”C++” back end represents the tree with C++ classes. This back end is considered
experimental. The tree is built with an optimised suffix tree algorithm which speeds
up the construction by at least a factor 10 in standard settings. As the tree is kept
outside of R direct reach, context trees built with the C++ back end must be restored
after a saveRDS()/readRDS() sequence. This is done automatically by recomputing
completely the context tree.

References

Bühlmann, P. and Wyner, A. J. (1999), ”Variable length Markov chains. Ann. Statist.” 27
(2) 480-513 doi:10.1214/aos/1018031204

See Also

cutoff(), prune() and tune_vlmc()

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power,

breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1)))
)
model <- vlmc(rdts)
draw(model)
depth(model)
reduce the depth of the model
shallow_model <- vlmc(rdts, max_depth = 3)
draw(shallow_model, prob = FALSE)

https://doi.org/10.1214/aos/1018031204

108 vlmc.default

improve probability estimates
robust_model <- vlmc(rdts, min_size = 25)
draw(robust_model, prob = FALSE) ## show the frequencies
draw(robust_model)

vlmc.default Fit a Variable Length Markov Chain (VLMC)

Description

This function fits a Variable Length Markov Chain (VLMC) to a discrete time series.

Usage

Default S3 method:
vlmc(

x,
alpha = 0.05,
cutoff = NULL,
min_size = 2L,
max_depth = 100L,
prune = TRUE,
keep_match = FALSE,
backend = getOption("mixvlmc.backend", "R")

)

Arguments

x a numeric, character, factor or logical vector
alpha number in (0,1] (default: 0.05) cut off value in quantile scale in the pruning

phase.
cutoff non negative number: cut off value in native (likelihood ratio) scale in

the pruning phase. Defaults to the value obtained from alpha. Takes
precedence over alpha is specified.

min_size integer >= 1 (default: 2). Minimum number of observations for a context
in the growing phase of the context tree.

max_depth integer >= 1 (default: 100). Longest context considered in growing phase
of the context tree.

prune logical: specify whether the context tree should be pruned (default be-
haviour).

keep_match logical: specify whether to keep the context matches (default to FALSE)
backend ”R” or ”C++” (default: as specified by the ”mixvlmc.backend” option).

Specifies the implementation used to represent the context tree and to
built it. See details.

vlmc.default 109

Details

The VLMC is built using Bühlmann and Wyner’s algorithm which consists in fitting a
context tree (see ctx_tree()) to a time series and then pruning it in such as way that the
conditional distribution of the next state of the time series given the context is significantly
different from the distribution given a truncated version of the context.
The construction of the context tree is controlled by min_size and max_depth, exactly as
in ctx_tree(). Significativity is measured using a likelihood ratio test (threshold can be
specified in terms of the ratio itself with cutoff) or in quantile scale with alpha.
Pruning can be postponed by setting prune=FALSE. Using a combination of cutoff() and
prune(), the complexity of the VLMC can then be adjusted. Any VLMC model can
be pruned after construction, prune=FALSE is a convenience parameter to avoid setting
alpha=1 (which essentially prevents any pruning). Automated model selection is provided
by tune_vlmc().

Value

a fitted vlmc model.

Back ends

Two back ends are available to compute context trees:

• the ”R” back end represents the tree in pure R data structures (nested lists) that be
easily processed further in pure R (C++ helper functions are used to speed up the
construction).

• the ”C++” back end represents the tree with C++ classes. This back end is considered
experimental. The tree is built with an optimised suffix tree algorithm which speeds
up the construction by at least a factor 10 in standard settings. As the tree is kept
outside of R direct reach, context trees built with the C++ back end must be restored
after a saveRDS()/readRDS() sequence. This is done automatically by recomputing
completely the context tree.

References

Bühlmann, P. and Wyner, A. J. (1999), ”Variable length Markov chains. Ann. Statist.” 27
(2) 480-513 doi:10.1214/aos/1018031204

See Also

cutoff(), prune() and tune_vlmc()

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
rdts <- cut(pc$active_power,

breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1)))
)
model <- vlmc(rdts)
draw(model)

https://doi.org/10.1214/aos/1018031204

110 vlmc.dts

depth(model)
reduce the depth of the model
shallow_model <- vlmc(rdts, max_depth = 3)
draw(shallow_model, prob = FALSE)
improve probability estimates
robust_model <- vlmc(rdts, min_size = 25)
draw(robust_model, prob = FALSE) ## show the frequencies
draw(robust_model)

vlmc.dts Fit a Variable Length Markov Chain (VLMC)

Description

This function fits a Variable Length Markov Chain (VLMC) to a discrete time series.

Usage

S3 method for class 'dts'
vlmc(

x,
alpha = 0.05,
cutoff = NULL,
min_size = 2L,
max_depth = 100L,
prune = TRUE,
keep_match = FALSE,
backend = getOption("mixvlmc.backend", "R")

)

Arguments

x a discrete time series represented by a dts object as created by dts()
alpha number in (0,1] (default: 0.05) cut off value in quantile scale in the pruning

phase.
cutoff non negative number: cut off value in native (likelihood ratio) scale in

the pruning phase. Defaults to the value obtained from alpha. Takes
precedence over alpha is specified.

min_size integer >= 1 (default: 2). Minimum number of observations for a context
in the growing phase of the context tree.

max_depth integer >= 1 (default: 100). Longest context considered in growing phase
of the context tree.

prune logical: specify whether the context tree should be pruned (default be-
haviour).

keep_match logical: specify whether to keep the context matches (default to FALSE)
backend ”R” or ”C++” (default: as specified by the ”mixvlmc.backend” option).

Specifies the implementation used to represent the context tree and to
built it. See details.

vlmc.dts 111

Details

The VLMC is built using Bühlmann and Wyner’s algorithm which consists in fitting a
context tree (see ctx_tree()) to a time series and then pruning it in such as way that the
conditional distribution of the next state of the time series given the context is significantly
different from the distribution given a truncated version of the context.
The construction of the context tree is controlled by min_size and max_depth, exactly as
in ctx_tree(). Significativity is measured using a likelihood ratio test (threshold can be
specified in terms of the ratio itself with cutoff) or in quantile scale with alpha.
Pruning can be postponed by setting prune=FALSE. Using a combination of cutoff() and
prune(), the complexity of the VLMC can then be adjusted. Any VLMC model can
be pruned after construction, prune=FALSE is a convenience parameter to avoid setting
alpha=1 (which essentially prevents any pruning). Automated model selection is provided
by tune_vlmc().

Value

a fitted vlmc model.

Back ends

Two back ends are available to compute context trees:

• the ”R” back end represents the tree in pure R data structures (nested lists) that be
easily processed further in pure R (C++ helper functions are used to speed up the
construction).

• the ”C++” back end represents the tree with C++ classes. This back end is considered
experimental. The tree is built with an optimised suffix tree algorithm which speeds
up the construction by at least a factor 10 in standard settings. As the tree is kept
outside of R direct reach, context trees built with the C++ back end must be restored
after a saveRDS()/readRDS() sequence. This is done automatically by recomputing
completely the context tree.

References

Bühlmann, P. and Wyner, A. J. (1999), ”Variable length Markov chains. Ann. Statist.” 27
(2) 480-513 doi:10.1214/aos/1018031204

See Also

cutoff(), prune() and tune_vlmc()

Examples
pc <- powerconsumption[powerconsumption$week == 5,]
power_dts <- dts(cut(pc$active_power,

breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1)))
))
model <- vlmc(power_dts)
draw(model)

https://doi.org/10.1214/aos/1018031204

112 vlmc.dts

depth(model)
reduce the depth of the model
shallow_model <- vlmc(power_dts, max_depth = 3)
draw(shallow_model, prob = FALSE)
improve probability estimates
robust_model <- vlmc(power_dts, min_size = 25)
draw(robust_model, prob = FALSE) ## show the frequencies
draw(robust_model)

Index

∗ datasets
globalearthquake, 57
powerconsumption, 83

.Random.seed, 92, 94, 96

AIC(), 81
as_covlmc, 5
as_sequence, 6
as_sequence(), 91
as_vlmc, 6
as_vlmc.ctx_tree_cpp, 7
autoplot.tune_covlmc, 8
autoplot.tune_vlmc, 9

base::plot(), 80, 81
base::sample(), 95, 96
base::signif(), 51
BIC(), 81
butcher::butcher(), 99

charset_ascii, 10
charset_ascii(), 13, 53
charset_utf8, 12
charset_utf8(), 11, 53
children, 13
cli::is_utf8_output(), 4
context_number, 23
context_number.covlmc, 24
contexts, 14
contexts(), 6, 25, 40, 87
contexts.covlmc, 16
contexts.covlmc(), 15, 18, 20, 23, 26, 60,

70, 75, 78, 99
contexts.ctx_tree, 18
contexts.ctx_tree(), 15, 17, 18, 20, 22,

23, 25, 49
contexts.ctx_tree_cpp

(contexts.ctx_tree), 18
contexts.vlmc, 20

contexts.vlmc(), 15, 18, 20, 23, 72–74,
76, 77

contexts.vlmc_cpp (contexts.vlmc), 20
counts, 24
counts(), 15, 17, 19, 22
covariate_depth, 26
covariate_memory, 26
covariate_memory(), 17
covlmc, 27
covlmc(), 4, 81, 90, 102, 103
covlmc.default, 29
covlmc.dts, 31
covlmc_control, 33
covlmc_control(), 27, 30, 32
ctx_tree, 34
ctx_tree(), 4, 7, 8, 28, 30, 32, 106, 107,

109, 111
ctx_tree.default, 35
ctx_tree.dts, 37
cutoff, 38
cutoff(), 21, 41, 89, 103, 105, 107, 109,

111
cutoff.covlmc, 39
cutoff.covlmc(), 28, 31, 33, 90
cutoff.ctx_node, 40
cutoff.ctx_node(), 17, 22
cutoff.vlmc, 41
cutoff.vlmc(), 22, 40, 41, 90
cutoff.vlmc_cpp (cutoff.vlmc), 41

depth, 43
depth(), 66, 68
draw, 44
draw(), 4, 10–13, 15, 17, 20, 22, 46, 51–53
draw.covlmc, 45
draw.covlmc(), 11–13, 52
draw.ctx_tree (draw.ctx_tree_cpp), 48
draw.ctx_tree(), 46, 50
draw.ctx_tree_cpp, 48
draw.vlmc, 50

113

114 INDEX

draw.vlmc(), 46
draw.vlmc_cpp (draw.vlmc), 50
draw_control, 51
draw_control(), 44–47, 49, 50
dts, 53
dts(), 27, 31, 34, 37, 54, 102, 104, 106,

110
dts_data, 54

find_sequence, 54
find_sequence(), 6, 13–15, 18–20, 22, 23,

25, 26, 40, 41, 58, 60, 61, 70, 74,
75, 78, 79, 82, 91

find_sequence.covlmc, 55
find_sequence.covlmc(), 15, 17, 18, 20,

23, 78
foreach::%dopar%, 103

globalearthquake, 57

is_context, 58
is_context(), 55, 56
is_covlmc, 58
is_ctx_tree, 59
is_dts, 60
is_merged, 60
is_merged(), 70
is_reversed, 61
is_reversed(), 91
is_vlmc, 62

logLik.covlmc, 62
logLik.vlmc, 63
logLik.vlmc_cpp (logLik.vlmc), 63
loglikelihood, 65
loglikelihood(), 63, 64, 81, 102, 104
loglikelihood.covlmc, 67
loglikelihood.covlmc(), 73, 85, 92, 99
loglikelihood.vlmc(), 77, 86, 94, 97

merged_with, 70
merged_with(), 17, 60, 61
metrics, 71
metrics(), 17, 21
metrics.covlmc, 72
metrics.covlmc(), 72, 75, 99
metrics.ctx_node, 74
metrics.ctx_node(), 17, 22, 72–74, 76,

77

metrics.ctx_node_covlmc, 75
metrics.vlmc, 76
metrics.vlmc(), 72–74, 76, 77
mixvlmc (mixvlmc-package), 4
mixvlmc-package, 4
model, 78
model(), 17

nnet::multinom(), 4, 28, 30, 32

options(), 4

parent, 79
plot.tune_covlmc (plot.tune_vlmc), 80
plot.tune_covlmc(), 9
plot.tune_vlmc, 80
plot.tune_vlmc(), 10
positions, 82
positions(), 15, 17, 19, 22
powerconsumption, 83
predict.covlmc, 84
predict.vlmc, 85
predict.vlmc(), 71–74, 76, 77
predict.vlmc_cpp (predict.vlmc), 85
print(), 8, 9
print.contexts, 87
print.dts, 88
print.metrics.covlmc

(metrics.covlmc), 72
print.metrics.vlmc (metrics.vlmc), 76
prune, 88
prune(), 7, 8, 21, 22, 38, 39, 41, 43, 103,

105, 107, 109, 111
prune.covlmc, 90
prune.covlmc(), 27, 28, 30–33, 99
prune.vlmc(), 22, 90

rev.ctx_node, 91
rev.ctx_node(), 61

set.seed(), 92, 94, 97
simulate.covlmc, 91
simulate.covlmc(), 99
simulate.vlmc, 93
simulate.vlmc_cpp, 95
states, 97
states(), 14, 70
stats::binomial(), 4, 28, 30, 32
stats::glm(), 4, 28, 30, 32, 48

INDEX 115

stats::logLik(), 67, 69
stats::simulate(), 92, 94, 96, 97

trim, 98
trim.covlmc, 99
trim.covlmc(), 78, 103
trim.vlmc, 100
trim.vlmc_cpp, 101
tune_covlmc, 101
tune_covlmc(), 5, 8, 40, 80, 99
tune_vlmc, 104
tune_vlmc(), 4, 7–9, 42, 43, 80, 89, 107,

109, 111

utils::object.size(), 101

VGAM::multinomial(), 4, 28, 30, 32
VGAM::vglm(), 4, 28, 30, 32
vlmc, 106
vlmc(), 4, 7, 8, 28, 30, 32, 81, 90, 96, 105
vlmc.default, 108
vlmc.dts, 110

	mixvlmc-package
	as_covlmc
	as_sequence
	as_vlmc
	as_vlmc.ctx_tree_cpp
	autoplot.tune_covlmc
	autoplot.tune_vlmc
	charset_ascii
	charset_utf8
	children
	contexts
	contexts.covlmc
	contexts.ctx_tree
	contexts.vlmc
	context_number
	context_number.covlmc
	counts
	covariate_depth
	covariate_memory
	covlmc
	covlmc.default
	covlmc.dts
	covlmc_control
	ctx_tree
	ctx_tree.default
	ctx_tree.dts
	cutoff
	cutoff.covlmc
	cutoff.ctx_node
	cutoff.vlmc
	depth
	draw
	draw.covlmc
	draw.ctx_tree_cpp
	draw.vlmc
	draw_control
	dts
	dts_data
	find_sequence
	find_sequence.covlmc
	globalearthquake
	is_context
	is_covlmc
	is_ctx_tree
	is_dts
	is_merged
	is_reversed
	is_vlmc
	logLik.covlmc
	logLik.vlmc
	loglikelihood
	loglikelihood.covlmc
	merged_with
	metrics
	metrics.covlmc
	metrics.ctx_node
	metrics.ctx_node_covlmc
	metrics.vlmc
	model
	parent
	plot.tune_vlmc
	positions
	powerconsumption
	predict.covlmc
	predict.vlmc
	print.contexts
	print.dts
	prune
	prune.covlmc
	rev.ctx_node
	simulate.covlmc
	simulate.vlmc
	simulate.vlmc_cpp
	states
	trim
	trim.covlmc
	trim.vlmc
	trim.vlmc_cpp
	tune_covlmc
	tune_vlmc
	vlmc
	vlmc.default
	vlmc.dts
	Index

